Constrained Optimization using Conjugate Gradient
method

1% Parmar Harsharajsinh Birendrasinh (150103051)

Department of Mechanical Engineering
IIT Guwahati
Guwabhati, India
parmar @iitg.ac.in

Abstract—Conjugate gradient methods are widely used for
unconstrained optimization, especially large scale problems.This
paper presents a new version of the conjugate gradient method,
which converges conjugate gradient method with bisection
method and bounding phase method.The resulting algorithm is
more efficient than the conjugate gradient method as it converges
faster with less no. of function evaluations.

Index Terms—unconstrained optimization, bisection method,
bounding phase method

I. INTRODUCTION

In mathematics, the conjugate gradient method is an al-
gorithm to find the numerical solution of particular systems
of linear equations, such as those whose matrix is symmetric
and positive-definite. The conjugate gradient method is often
implemented as an iterative algorithm, applicable to sparse
systems that are too large to be handled by a direct imple-
mentation. Large sparse systems often arise when numerically
solving partial differential equations or optimization problems.

The conjugate gradient method is widely used to solve
unconstrained optimization problems such as energy mini-
mization. It was developed by Magnus Hestenes and Eduard
Stiefel in 1951.

Our goal is to develop a modified conjugate gradient method
which is more efficient than the original one. The project was
divided into three phases. The first phase involved solving
the single variable optimization problems using Bisection cum
Bounding phase and Secant cum Bounding phase method. In
second phase, we tackled unconstrained multi-variable prob-
lems using modified Conjugate Gradient algorithm. In phase
three, we solved the multi-variable constrained optimization
problems using Method of Multiplier (MoM) and Bracket
Operator Penalty Function Method.

II. CONJUGATE GRADIENT METHOD

The conjugate gradient method, also known as Fletcher-
Reeves method, is similar to the conjugate direction method
which uses a history of previous solutions to create new search
directions. Assuming that the objective function is quadratic
(which is a valid assumption at the vicinity of the minimum
for many functions), conjugate search directions can be found
using only the first order derivatives. The following conjugate
search directions were suggested by Fletcher and Reeves who

27 Kush Gupta (150103042)
Department of Mechanical Engineering
IIT Guwahati
Guwabhati, India
kush.gupta@iitg.ac.in

proved that s(*) is conjugate to all previous search directions
s fori=1,2,..,(k—1):

k) _ k IVAEID2 (k=1) 0 _
S( ) = *Vf(I( )) + WS( ) with S() k—)

—-Vf (3:(0)). This recursive equation for search direction s
requires only first-order derivatives at two points x(*) and
(=1 The initial search direction s(*) is assumed to be the
steepest descent direction at the initial point. Thereafter, the
subsequent search directions are found by using the above
recursive equation.

Fig. 1. Conjugate Gradient Operation

A. Algorithm

o Step-1 Initialization: Choose 2(*) using bounding
phase method. Also, choose the termination parameters
€1,€2,€3.

o Step-2 Computation: Find Vf(z(®) and set s =
—Vf(z©) .

« Step-3 Uni-directional search: Find A\(*) using bisection
search method, such that f((z(?)+ A% 5(0)) is minimum
with termination parameter ¢;. Set (1) = 2(0) 4 \(0)" 5(0)
and k = 1. Calculate V f (D).



o Step-4 Iteration: Set s(¥) ~Vf(@®) +

IS (k1)
V£ (k=12

o Step-5 Uni-directional search: Find A(*) such that
F((®) + X®5(R)) is minimum with termination pa-
rameter ;. Set z(F+t1) = (k) 4 \(R)" (k)

TS l[(@* D —a®))

e Step-6 Termination: If SR
|V f(x* )| < €3, Terminate.

Else set k = k + 1 and go to Step-4.

< € or

For minimization of linear or quadratic objective functions,
two iterations of this algorithm are sufficient to find the
minimum. But, for other functions, more iterations through
Steps 4 to 6 may be necessary. It is observed that the search
directions obtained using Equation above become linearly
dependent after a few iterations of the above algorithm. When
this happens, the search process becomes slow. In order to
make the search faster, the linear dependence of the search
directions may be checked at every iteration. One way to
compute the extent of linear dependence is to calculate the
included angle between two consecutive search directions
s =1 and s(®) If the included angle is close to zero (less than
a small predefined threshold angle), the algorithm is restarted
from Step 1 with 2(?) being the current point. A restart is
usually necessary after every N search directions are created.

B. Flow Chart

Initial parameter
distribution o

l

Initial search direction

New search direction

P(k+l)=_VJ(atkH}) + "V-J(ﬂum))"2 Pl")

0__ ©
PU=—VJ (o) IVI®)F

k=0 k=k+1

Iterative search for * with
= m]i(n Jo+yP®)

I

New parameter distribution
o= 4y P

<

Yes

Final parameter distribution
(k+l)
o

Fig. 2. Conjugate Gradient Method

Here J represents the function.

C. Computational complexity of the algorithm

The dominating operations during an iteration of Conjugate
Gradient are matrix-vector products. In general, matrix-vector
multiplication requires O(m) operations, where m is the num-
ber of non-zero entries in the matrix. The time complexity is
slightly more complex, since there are a number of different
components that need to happen through each iteration. The
components include: calculating the gradient, calculating the
beta, finding the new search direction, calculating the step
amount, and updating the guess. Calculating the gradient is an
O(mn) operation for both the explicitly defined derivative and
the induced derivative. When the derivative function is pro-
vided explicitly, first the Jacobian matrix must be computed,
which is an O(mn) calculation.Conjugate Gradient Method has
a time complexity of O(mv/k).

ITI. RESULTS AND DISCUSSION
A. Details of the Hardware and Programming platform used

The algorithms have been formulated and run on a machine
with the following specifications,

e Intel Core 17-7500 2.90 GHz
e« 16 GB DDR4 RAM

Programs have been written in FORTRAN F90 and plotting
has been done in Octave.

B. Parameters set for algorithm and test problems

The algorithms use inputs from the user on convergence
limits and various parameters like Increment coefficient,r,
maximum number of sequences and initial point.

For bracket operator penalty method the following parame-
ters have been used,

o Convergence limits - 1le~3

¢ Maximum Sequences - 20

e Increment coefficient (¢) - 10
e 7-0.01

For method of multipliers the following parameters have
been used,

« Convergence limits - 1e~3
e Maximum Sequences - 20
e« 7 -10

C. Table of results

Problem 1
Penalty Function
Average Median Standard Dev. Best worst
-9.74785E-01 -9.95942E-01 0.037796321 -9.99043E-01 8.78546E-01

Function value
-9.95942E-01
-9.47454€-01
-8.78546E-01
-9.95942E-01

0. -9.95942E-01

(0.2,0.3,0.4,0.5,0.6) -9.72062E-01

(0.1,0.3,0.5,0.7,0.9) -9.71032E-01

(0.5,0.2,0.8,0.4,0.9) -9.95944E-01

(0.6,0.3,0.7,0.4,0.8) -9.99043E-01

(0.8,0.8,0.8,0.8,0.8) -9.95942E-01

Variable values

Fig. 3. Problem 1 Results using Penalty Function Method



Variable Values
(0.1,0.1,0.1,0.1,0.1)
{0.2,0.2,0.2,0.2,0.2)
(0.4,0.6,0.6,0.6,0.6)
(0.7,0.7,0.7,0.7,0.7)
{0.9,0.9,0.9,0.9,0.9)
{0.2,0.3,0.4,0.5,0.6)
(0.1,0.3,0.5,0.7,0.9)
(0.5,0.2,0.8,0.4,0.9)
(0.6,0.3,0.7,0.4,0.8)
(0.8,0.8,0.8,0.8,0.8)

Variable Values
(0.1,0.1)
(0.3,0.3)
(11)
(12)
(1.2,4.2)
(2.2)
(3.3)
(4,2)
(5.8)
(6,7)

Fig. 5. Problem 3 Results using Penalty Function Method

Variable Values
(0.1,0.1)
(0.3,0.3)
(1.1)
(1.2)
(1.2,4.2)
(2.2)
(3.3)
(4.2)
(5.8)
(6,7)

Variable Values
(-1,1,1,-0.7,-0.7)
(-2,2,2-1,-1)
(-151,1,-1-1)
(-2.3,2,2,-1.5,-1.5)
(-152,2,-1-1)
(-0.5,1,1,-1.5,-1.5)
(-21,1,1,-1,-1)
(-1.3,2,2,-0.7,-0.7)
(-1.7,1.2,1.2,-0.7,-0.7)
(-2.1,1,1,-0.5,-0.5)

Variable Values
(-1,1,1,-0.7,-0.7)
(-2,2,2-1,-1)
(-1.5,1,1,-1,-1)
(-2.3,2,2,-15,-1.5)
(-1.52,2,-1-1)
(-0.5,1,1,-1.5,-1.5)
(-21,1,1,-1-1)
(-1.3,2,2,-0.7,-0.7)
(-1.7,1.2,1.2,-0.7,-0.7)

D. Comparison of Results and Plots

Problem 1
MOM
Function Value  Average Median  Standard Dev. Best Worst COnVergﬁnCe haS been aSSeSSed by plottlng the funCtlon
-1.00000E+00 -1.00000E+00 -1.00000E+00 0 -1.00000E+00 -1.00000E+00 .
10000000 value over each sequence and by observing the number of
e function calls performed over the sequences. Function values
~1.00000E+00 give us a clear view of whether the algorithm is attaining a
-1.00000E+00 1t . . .
-1.00000E200 steady state value or exhibiting fluctuations. It is important to
et note that this plot does not convey that the steady state value
-1.00000E+00 is the correct solution but solely helps us in troubleshooting.
On the same lines, the number of function calls also provide
Fig. 4. Probl 1 Results using MoM . . .
8 foblef 1 Resulls using M0 us an alternative approach for analysis. Function calls are
made throughout the code and specifically in the multi-variable
problem 3 optimization and uni-directional search subroutines. When the
Penalty function : : s s
Function value | versge. | modin [Standard Do) Best Woret computations attain a steady state implying that the computed
-1.05459E-01 -5.18096E-02 -3.15B06E-02  0.03722213 -1.05459E-01 -2.18954E-02 solution point is not Changing’ the number of function calls
-2.18954E-02 .
2.158066-02 per sequence become uniform. So near convergence, the plot
e of function calls with sequence becomes a straight line with
3.15806-02 the slope remaining constant thereafter.
-3.15806E-02
-3.15806E-02
-2.19186E-02
-1.05460E-01

Problem 3
MomM
Function Value Average Median  Standard Dev.
-2.17900E-02 -6.65657E-02 -6.84448E-02 0.041118511
-1.05460E-01
-1.05459E-01
-3.15806E-02
-1.05460E-01
-1.05460E-01
-1.05309E-01
-3.15806E-02
-3.15806E-02
-2.19774E-02

Fig. 6. Problem 3 Results using MoM

Best

Problem 1
Penalty function
Best Initial Guess Best min. point fmincon() point Best Func. value fmincon(} func. value
0.6 4.73440E-01 4.47214E-01 -9.99043E-01 -1.00000E+00
0.3 4.40400E-01 4.47214E-01
0.7 4.40270E-01 A4.47214E-01
04 4.40260E-01 4.47214E-01

-1.05308E-01 -2.17300E-02

Waorst 0.8 4.40820E-01 4.47214E-01
MOM
Best Initial Guess Best min. point fmincon() point Best Func. value fmincon(} func. value
0.6 4.47214E-01 4.47214E-01 -1.00000E+00 -1.00000E+00

0.3 4.47214E-01 4.47214E-01
0.7 4.47214E-01 4.47214E-01
0.4 4.47214E-01 4.47214E-01
0.8 4.47214E-01 4.47214E-01

Fig. 9. Problem 1 Result Comparison

Problem 3
Penalty function

Problem 5 Best Initial Guess Bestmin. point fmincon() point Best Func. value fmincon() func. value
, Penalty 0.1  1.22790E+00 1.22797E+00 -1.05459E-01 9.58250E-02
Function Value Average Median Standard Dev. Best Worst
1.00000E+00  1.00000E+00  1.00000E+00 0  5.45430E-02 1.07840E-01 0.1 3.744308+00 447214801
1.00000E+00 MomM
1.00000E+00 Best Initial Guess Best min. point fmincon() point Best Func. value fmincon(} func. value
1.00000E+00 3 1.22790E+00 1.22797E+H00 -1.05459E-01 9.58250E-02
1.00000E+00 3 3.74490E+00 4.47214E-01
1.00000E+00
1.00000E+00
1.00000E+00
LO0DO0E+00 Fig. 10. Problem 3 Result Comparison
1.00000E+00
Fig. 7. Problem 5 Results using Penalty Function Method Problem 5
Penalty function
Best Initial Guess Best min. point fmincon() point Best Func. value fmincon() func. value
-1 -1.75190E+00 -1.71714E+00 5.45430E-02 5.39498E-02
Problem 5
MOM 1 1.63590E+00 1.59571E+00
Function Value Average Median  Standard Dev. Best Worst 1 L.76130E+00 L.82725E+00
1.00000E+00  1.00000E+00  1.00000E+00 0 5.37011E-03 8.09889E-02 -0.7 -7.59110E-01 -7.63641E-01
1.00000E+00 -0.7 -7.59110E-01 -7.63645E-01
1.00000E+00 MOM
1.00000E+00 . . . . . .
1.00000E400 Best Initial Guess Best min. point fmincon() point Best Func. value fmincon() func. value
1.00000E200 -2 -L75190E+00  -2.04650E+00 5.37011E-03 5.39438E-02
1.00000E+00 2 1.63530E+00 1.79770E+00
1.00000E+00 2 1.76130E+00 1.93570e+00
1.00000E+00 -1 -7.59110E-01  -8.56720E-01
1.00000E+00
-1 -7.59110E-01 -8.56720E-01

(-2.1,1,1,-0.5,-0.5)

Fig. 8. Problem 5 Results using MoM

Fig. 11. Problem 5 Result Comparison



For problem 1 (detailed in appendix) we have the following
results shown in Fig. 12, 13, 14 and 15 using bracket-operator
penalty method and method of multipliers.

Similarly for Problem 3 we have the following results as
shown in Fig. 16 and 17.

Function Value Vs Sequence

5 10 15 20 25

Sequence

Fig. 12. Method of Multipliers

Function Evaluations Vs Sequence

Function Evaluations

Sequence

Fig. 13. Method of Multipliers

Function Value Vs Sequence

Sequence

Fig. 14. Bracket-operator penalty method

Function Evaluations Vs Sequence

e
—a— S il
i

e

5 10 15 20 L

Sequence

Fig. 15. Bracket-operator penalty method

Function Value Vs Sequence

|

A
L, RSN SE R

Sequence

5 10 15 20 5

Function Value

Fig. 16. Method of Multipliers

Function Value Vs Sequence

ﬂﬂﬂﬂﬂ

ﬂﬂﬂﬂﬂ

Function Value

5 10 15 20 25

Sequence

Fig. 17. Bracket-operator penalty method

E. Discussion

Our algorithm works efficiently for most problems us-
ing both method of multipliers and bracket-operator penalty
method. Results shown above validate this claim for three
problems based on comparison with exact solutions and
convergence analysis. Interesting observations were made in
the context of relative performance of the methods. In a
broader sense, bracket-operator penalty method is observed
to be giving acceptable solutions over a wider range of initial
points. But the increment and value of r needs to be tailored
in some cases to the specific problem under consideration.
Also, high accuracy solutions are often an outcome of fortitude
when using this method as the contours get distorted and may
introduce artificial minima.

Method of multipliers enable us to achieve highly accurate
solutions to specific problems for instance, problem 1 in this
study. The original contours are preserved and so there is no
added complication of probabilistic convergence to artificial
minima. On the other hand, this method provided better results
when the initial point was taken near the actual minima for
our analysis. So the versatility in terms of initial point is not
as concrete as the bracket-operator method. Finally, the con-
vergence is generally faster using this method in comparison
to bracket operator and for certain problems highly accurate
solutions are obtained.

Problems 2 and 4 have not been evaluated in this study
mainly because of certain egregious difficulties. Problem 2
has two constraints not in accordance with mathematical logic
and so if we try to implement them together one would be
violated and would unnecessarily distort the contours. We have
managed to find the solution to this problem but only in a small
range of initial points varying from (13,0)— (13, 1). Naturally,



this special treatment will not be useful for a robust analysis subject to constraints.
and so we have excluded it. Problem 4 poses a computation
challenge in a sense that eight variables are involved with
six inequality constraints. Thus over the range of variables
given in the problem it was difficult for us to discern where

( = —1+4 0.0025(z4 + z¢) < O,
(
1 e PO O . (
the optima might lie. As a result, a similar strategy of special (
(
(

= —1+40.0025(—z4 + 25 + z7) < 0,

-1+ 0.01(—z3 + zs) < 0,

100x7 — z1x6 + 833.33252x4 — 83333.333 < 0,
Toxy — Towy — 1250x4 + 125025 < 0,

= x3r5 — x3rg — 250025 4+ 1250000 < 0.

o
V] =
Il

o @
> W

initial points had to be implemented here and as detailed earlier
is not of much practical use.

)
o

8
— — N ~— ~— —
I

)
)

CONCLUSION

In conclusion we can say that the Bracket-operator penalty
method works well over a range of initial points with consider- Search Space: [; (lower bound) < z;,
able accuracy. Method of multipliers gives us highly accurate
results for certain problems but has a narrower allowance
on the initial point values. For unconstrained optimization,
conjugate gradient method allows proper refinement from a [ (lower bound) =10 % (10,100,100,1,1,1,1,1),
point away from the minima but may require resetting when w (upper bound) = 1000 * (10,10,10,1,1,1,1,1).
the process becomes slow. Finally, unidirectional search using
a combination of bisection and bounding phase method is

u; (upper bound), ¢ = 1, 2,..., 8,

e Question 5.

found to work properly for the problems considered in our min f(x) = e"1P2TATs (5)
analysis. i .
subject to constraints.
APPENDIX ) ) 5 9 9
Problem specifications and their solutions have been listed hi(e) = @i+ +232ie; — 10 =0,
here for the different cases considered in our analysis. ho(z) = waws — Bagxs = 0,
e Question 1. ha(zx) = a3 + a3 +1=0.
n
max f(x) = n T; 1
/(@) (f) };[1 W Search Space: [; (lower bound) < z; u; (upper bound), i = 1, 2,. ...
subject to constraint.
n u(upper bound) = (2.3,2.3,3.2,3.2,3.2),
hi(x) = Z a; —1=0 I (lower bound) = —u (upper bound).
i=1

Search Space: 0 < z; < 1,71 =1,2,..., n.
e Question 2.
min f(z) = (z1 — 10)® + (22 — 20)° (2)
subject to constraints.
(@) = (1 — 57+ (z2 — 5)° — 100 < 0,
g(x) = (z1 —5)° + (2 — 5)> — 82.81 > 0.
Search Space:! < z; < 100,¢ = 1, 2, and! = (13,0).
e Question 3.

sin3(2mxy) sin(2mxs)
z3 (1 + x2)

; 3)

max f(z) =
subject to constraints.

gi(z) = 22 —a9+1<0,

@) = 1—a1 + (22 — 4 <0.

Search Space: 0 < z; < 10,7 = 1, 2.
o Question 4.

min f(z) = 21 + z2 + 3, “4)



