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Flow around a square cylinder

1 Introduction

External flows play a critical role in examining practical fluid flow phenomena with a notable
one being the periodic shedding of vortices about a long cylindrical structure. This shedding
creates a street of alternate vortices in the wake of the body termed as the Von-Karman
vortex street. Numerous practical structures fit into this description like skyscrapers, long
spanned bridges, transmission wires and others. The vortices cause periodic forcing on the
structure leading to vibrations and flow induced acoustics which need to be examined for
design purposes. The present work considers 2D flow around a square cylinder using the
Immersed boundary method which can then be extended to model flows around arbitrary
cross-sections. Three flow regimes are considered in the analysis namely Stokes flow, low-Re
and high-Re transient Navier-Stokes equation. A primitive variable formulation is devised
using a second order mixed explicit/implicit time integration scheme with Cranck-Nicolson
scheme operating on the diffusive terms and a second order Adams-Bashforth scheme acting
on the convective terms. Second order spatial discretization is used for the derivatives and
projection method is implemented to treat the velocity pressure coupling.

2 Problem Description

The problem represents two-dimensional flow over an infinitely long square cylinder with
uniform free-stream velocity at the inlet, top and bottom boundaries of the system as shown
in Fig 1.

The square cylinder has a length L = 1 and the computational domain has a length
Lc = 10, width Wc = 5 to ensure that the conditions at the boundaries do not affect the
physics near the cylinder. The Reynolds number is varied from 0.01 to 1000 and the domain
is divided into 100 elements lengthwise and 50 elements along the width. A transient solution
technique is adopted with a time step 10−3 to ensure stability.

Flow is assumed to be incompressible and body forces are assumed to be absent in the
analysis.

Spatial Discretization

The spatial discretization is carried out using Finite Difference approximations of the
derivatives. Second order accurate approximations are defined at every point in the domain.
At the boundaries, one sided second order approximations for the first and second order
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Figure 1: Physical domain

derivatives are defined. In the interior of the domain, central differencing is done for the first
and second order derivatives.

At the boundaries,

∂u

∂x i
=

3ui − 4ui−1 + ui−2

2∆x
or

∂u

∂x i
=
−3ui + 4ui+1 − ui+2

2∆x

∂2u

∂x2 i
=

2ui − 5ui−1 + 4ui−2 − ui−3

∆x2
or

∂2u

∂x2 i
=

2ui − 5ui+1 + 4ui+2 − ui+3

∆x2

In the interior,

∂u

∂x i
=
ui+1 + ui−1

2∆x

∂2u

∂x2 i
=
ui+1 − 2ui + ui−1

∆x2

Note that in the above expressions the j index is not changing and so has been omitted
for clarity. Similarly we can define the derivatives in the y-direction for the point (i, j) and
form the derivative matrices required for our computations. One-sided approximations work
for finding the derivative values at the boundaries when the velocity has already been solved
and known. But while enforcing Neumann boundary conditions they need to be changed in
order to increase computational efficiency as we shall see later.

Temporal Discretization
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Temporal discretization is carried out using a second-order semi-implicit time integration
scheme [1]. The time integration scheme is formed as a combination of Crank-Nicolson
scheme acting on the diffusive terms and Adams-Bashforth scheme acting on the convective
terms. Combination of an explicit second-order Adams-Bashforth scheme for the advection
terms and an implicit Crank-Nicolson scheme for diffusion terms can be described as follows:

NL(φ) =
3

2
NL(φn)− 1

2
NL(φn−1)

D(φ) =
D(φ) +D(φn)

2

where NL(φ) and D(φ) represent,

NL(φ) = u
∂φ

∂x
+ v

∂φ

∂y
D(φ) =

∂2φ

∂x2
+
∂2φ

∂y2

Projection Method

Projection method belongs to the predictor-corrector class of algorithms and is non-iterative
in nature. Pressure acts as a projection of the predicted velocity field to form a divergence
free space in this class of methods.

a) Advection-Diffusion step which involves the intermediate velocity at (n+ 1)∆t, Ṽ

Ṽ − V n

∆t
=

1

Re
D(V )−NL(V ) in Ω

Here NL(V ) = (V · ∇)V and D(V ) = ∇2V represent the advection and diffusion
terms.

b) Pressure correction step solves the Poisson equation for P n+1

∇2P n+1 =
∇ · Ṽ

∆t
in Ω

With homogeneous Neumann boundary conditions

n̂ · ∇P n+1 = 0 on ∂Ω

Thereafter the velocities are updated as given below,

V n+1 = Ṽ −∆t∇P n+1 in Ω + ∂Ω
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The solution then proceeds to the next time step where the entire method is repeated
using the updated velocities. Here Ω represents the interior of the computational domain
and ∂Ω represents the boundary of the domain.

Boundary Conditions

Velocity boundary conditions are straightforward for the inlet, top and bottom boundaries
where the values of u, v components are provided and are 1, 0 respectively at each of the
boundaries. At the outlet, open boundary conditions are implemented for both u, v so that
they do not constrain the solution in any way. Outflow boundary conditions for a general
variable φ are given as,

∂φ

∂t
+ uav

∂φ

∂x
= 0

At the inlet, top and bottom boundaries,

u = 1 and v = 0

In our case, uav = 1 and the x-derivative represents the normal to the outlet surface.

Pressure boundary conditions are set to Neumann type at the inlet, top and bottom
boundaries where the normal derivatives of pressure are set to 0. At the outlet, a dirichlet
boundary condition is implemented to maintain well-posedness of the problem and pressure
value is set to 0.

poutlet = 0

At the inlet, top and bottom boundaries (ghost nodes implemented for the top and bottom
boundaries),

∂p

∂n
= 0

If we use one-sided derivative approximations at the top and bottom boundaries then the
bandwidth of the pressure coefficient matrix becomes twice and significantly hampers the
computational speed of the algorithm. Thus ghost noding is done for pressure boundary
conditions at the top and bottom boundaries which reduces the bandwidth, preserves the
symmetry and provides significant speed-up.

Finally, the effects of the square cylinder are realized in the flow phenomena using the
Immersed boundary method by forcing the velocity in the Ṽ calculation to be 0 on and
within the solid body [2]. Rest of the procedure remains intact with the global velocity
being used to find the pressure and subsequent known terms on the RHS of Ṽ .

Ṽ = 0 in solid

3 Results

The numerical formulation was run for various ranges of Re to encompass the different
regimes and the post processing was done by exporting a .dat file to Tecplot. Firstly, very
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low Re cases were examined to see the solution to the Stokes problem which is valid for
Re << 1 and is commonly referred to as creeping flow. For the case of creeping flow we
have a steady state solution to the problem where the streamlines seem to follow the solid
body without the onset of separation. In Fig 2 the key point is to note that the streamlines
follow the surface of the square throughout without any separation.

Figure 2: Streamlines plot in the Stokes regime

As we move to Re = 1 the symmetrical flow around the square starts stretching ever so
slightly as shown in Fig 3.

Figure 3: Streamlines plot at Re = 1

At Re = 10, 100 we observe the formation of stagnant vortices in the wake of the square
and marks the first instance of recirculation being observed in our physics as shown in Fig
4 and 5

Next, the formulation was run at Re = 1000 and the plot of vorticity and velocity vectors
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Figure 4: Streamlines plot at Re = 10

Figure 5: Streamlines plot at Re = 100

were observed over an extended period of time as shown in Fig 6.

The evolution of vortices is very slow for the uniform flow case and shedding occurs after
a very long time even at this high Re. So in order to visualize the shedding an external shear
was imposed in the inlet velocity boundary condition and then the contours were plotted
with time to observe the shedding as shown in Fig 7, 8 and 9 [3]. Inlet velocity is changed
to the following relation:

uin = 1 +Ky

Finally, the values of velocity components were plotted at the mid point of the domain
with the number of time steps to confirm the transient nature of the phenomena and the
plots are shown in Fig 10 and 11.
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4 Conclusions

A project method based second order accurate (both spatial and temporal) finite difference
scheme is developed in this work to solve fundamental fluid flow phenomena. This scheme was
validated by performing a channel flow test wherein the exact solution can be determined
analytically and compared with the numerical results. Furthermore, Immersed Boundary
Method is used in conjunction to model laminar flow past an infinitely long square cylinder.
Efforts have been made to establish the formulation for simple geometries initially which can
then be extended to complicated solid bodies as per the problem’s demands.

Three regimes were considered for modelling the flow past a cylinder and the results
obtained were in accordance to expectations and qualitatively validated by prevalent results
in literature. Stokes flow condition was implemented and the symmetrical distribution of
the streamlines was observed which validated results from that regime. For low Re stagnant
vortices are formed in the wake of the cylinder which is expected below the critical Re
required for shedding to start. Finally, high Re solutions were carried out to observe the
alternate shedding of vortices or the Von-Karman vortex street providing evidence of the
ability to handle instabilities and full blown transient integration of the physics by the
implemented scheme.

No claims have been made endorsing the current scheme to be superior or in comparison
to benchmark results and in a way the validation is largely void due to the lack of quantitative
comparisons like Clift, Cdrag, St and others. But we can surely claim that the current scheme
is able to capture the physics of the problem over a wide range of Re with acceptable accuracy
and stability which serves for basic computations.
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Figure 6: Comparison of vorticity contours and velocity vectors at t =12, 16 and 22 sec
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Figure 7: Time evolution of vorticity contours at Re = 1000
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Figure 8: Time evolution of vorticity contours at Re = 1000 (continued)
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Figure 9: Time evolution of vorticity contours at Re = 1000 (continued)

11



Figure 10: Mid-point values for u with time steps

Figure 11: Mid-point values for v with time steps
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