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Abstract

This project is aimed to develop and parallelize CFD solvers for incompressible heat and

fluid flows. The solver for incompressible heat and fluid flows is based on spectral method.

The parallelization of these codes is done based on the domain decomposition method using

OpenMP. This project is mainly divided into two modules - developing spectral codes and

parallelization of FDM and spectral codes. FDM codes are parallelized to lay the foundation

for working on spectral codes for fluid flow and heat transfer.

In the first module, a solver is developed for conduction heat transfer problems. The

solver is validated using heat conduction problem for which analytical solution is available.

Then, a solver for fluid flow problems is developed and the solver is validated against channel

flows and lid driven cavity. Then the solver is extended for convective heat transfer and

the solver is validated for forced convection in lid driven cavity and natural convection in

differentially side heated cavity. The above solvers are for regular rectangular geometries. A

solver also is developed for conduction in a triangular solid plate and is validated successfully.

In the second module, parallelization of the codes for heat transfer and fluid flow is carried

out. This module consists of two parts involving parallelization of codes based on FDM and

spectral methods respectively. First, one dimensional and two dimensional heat conduction

problems are implemented by dividing the domain into smaller domains. The computation

of individual smaller domains is given to different processors. The parallelization is further

extended to channel flow and lid driven cavity problem. In these conduction problems for

1-D and 2-D, the discretization is carried out using both FDM and spectral methods. For

fluid flow problems the discretization is carried out using spectral methods.
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Chapter 1

Introduction

Fluid flow and heat transfer are the central phenomena governing various physical processes.

Their understanding and visualization is important for designing components ranging from

micro-scale fuel cells to commercial power systems. Experimental and numerical approaches

serve to resolve the flow fields in various situations with each having their own benefits.

From an overall perspective, experiments and computations go hand-in-hand and complement

each other. In designing systems, computations are first carried out to consider numerous

variations and then experiments follow up to characterize their performance. On the other

hand for understanding novel flows, experiments precede computations to give insights on

their characteristics [1].

Numerical methods for solving PDEs have been developed since the 1950s with first

introductions to Finite Difference methods (FDM) [2]. Since then many more methods have

been devised with broader applications in fluid mechanics, structural analysis and other

diverse fields. Finite element method (FEM), Finite Volume method (FVM) and Spectral

methods have been used recently for solving flows. The FDM, FVM and FEM are local

methods and have a limited order of accuracy (2nd or 3rd order) promoting the need for

high accuracy solution methods. The present work fills this gap and focuses on formulating

high-accuracy Chebyshev Spectral codes for solving certain fundamental fluid flow and heat
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transfer problems.

Traditional serial computing proves to be insufficient and may not be able to solve such

problems in reasonable time. In some situations large number of parametric studies need to

be performed to find the appropriate and optimal design values. In such applications the use

of multiple processors becomes essential to solve the problem in reasonable time. To facilate

the use of multiple processors to work concurrently on different tasks of the same problem

parallelization of the code is essential.

1.1 Parallel Computing

Parallel computing in its simplest sense is to make use of multiple computing resources which

may include multi-core processors or multi-processors inteconnected via a communication

network to solve complex computational problems which can be broken down into multiple

discrete pieces concurrently. Each part is then broken down to a set of instructions which

are then run on individual processor (Computing resource). Parallel computing can therefore

combine multiple resources to achieve high performance and very fast computing.

There are different ways to make use of computing resources concurrently which define

the different parallel computing architectures.

1.1.1 Parallel Computing Memory Architecture

Parallel computing memory architectures can be broadly classified as shared , distributed

and hybrid distributed-shared memory architectures.

• Shared Memory In shared memory parallel computers all processors have access to

all memory as global address space. Multiple processors can share the same memory

resources while operating independent of each other. Changes in a memory location

effected by one processor are visible to all other processors. This leads to two problems

which needs to be addressed while designing a shared memory system: Performance
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degradation due to contention. Coherence problem. Shared memory architecture can

further be classified as Uniform Memory Access (UMA) and Non-Uniform Memory

Access (NUMA).

(a) UMA (b) NUMA

Fig. 1.1: Shared Memory

• Distributed Memory In distributed memory computers processors have their own

local memory which means there is no concept of global address space. Since memory

in one processor doesn’t map to another processor changes made by one are not visible

to the other. Therefore to communicate and synchronise data between inter-processor

memory a communication network is required which can vary widely and can simply

be ethernet. It becomes the responsibilty of the programmer to define how data

communication and synchronisation between tasks take place.

Fig. 1.2: Distributed Memory

• Hybrid Distributed-Shared Memory Hybrid distributed-shared memory architecture

employs both shared and distributed memory architectures. The shared memory

component can be a shared memory machine and/or graphics processing units (GPU)

3



while the distributed memory component is the networking of multiple shared memory/GPU

machines. Therefore, a network communications is required to communicate data and

synchronise tasks between machines participating in the system.

Fig. 1.3: Hybrid Memory

For our present work, we are working with shared memory architecture using the OpenMP

library to parallelize the codes.

1.1.2 Important Terms

Here we discuss some of common terminolgy associated with parallel computing to assess the

efficiency and performance of the parallel codes.

• Parallel Overhead The time consumed in coordinating parallel tasks as opposed

to doing some useful work. It may include factors such as process creation, thread

forking/joining, wait for member threads, data communication and synchronization.

• Amdahl’s Law Amdahl’s Law states that potential program speedup is defined as the

fraction of code (P) that can be parallelized: Equation for Amdahl’s Law,

Speed-up =
1

P
N

+ S
(1.1)

where P = parallel fraction, N = number of processors and S = serial fraction

• Observed Speed - Up Observed speedup of a code which has been parallelized is

defined as the ratio of wall-clock time of serial execution to wall-clock time of parallel
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execution. Equation for Observed Speed-Up,

Observed speed-up =
Wall-clock time of serial execution

Wall-clock time of parallel execution
(1.2)

1.2 Spectral Methods

Spectral methods are higher-order accurate numerical methods that surfaced in solving PDEs

during the late 1970. The order of accuracy is said to be equal to the number of grid points

provided that the function to be approximated is smooth, analytic and non-singular. The

type of approximation used for the function forms a cardinal aspect in any spectral method.

On the lines of this, usually two types of Spectral methods are used in CFD:

• Fourier Spectral Methods - These are used in problems exhibiting a periodicity at

the boundaries

• Chebyshev Spectral Methods - These are used for problems having non-periodic

boundary conditions

These methods can be rendered useful particularly for regular domains and usually involve

mathematical and implementation-level difficulties when extended to arbitrary domains. Our

work is based on Chebyshev collocation form of spectral methods which use a pre-defined set

of grid points called Gauss-Lobatto points which form a biased grid with refinements near

the corners. Specifically, in case of finite domains with ”physical” boundary conditions, for

instance the no slip condition, polynomial basis functions (Chebyshev) lead to efficient and

accurate algorithms [3]. These characteristics are to be kept in mind when using this method

for practical problems.
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1.3 Literature Review

Since the development of spectral methods in late 1970, a considerable amount of research

has been aimed at applying them in solving high-accuracy problems. C. Canuto et al. [4]

and D. Gottlieb et al. [5] considered the application of spectral methods in Direct Numerical

Simulations of turbulent flows. They also categorized the preferred type of spectral method

that is fourier or chebyshev depending on the boundary conditions of problems. Solomonoff

et al. [6] considered the global characteristics of psuedospectral methods and highlighted the

critical aspects to ensure correct solution procedure. Deville et al. [7] worked on deriving

the derivative matrices for chebyshev spectral methods.

Fluid flow problems are solved by using projection methods in conjunction with spectral

discretizations in this study and so a brief background on the developments on this side are

considered. Botella O. et al. [8] provided solutions to the Navier-Stokes equation using a

combination of spectral and temporal schemes. Chorin [9] and Temam [10] were the first ones

to propose the original form of projection method and since then several variants have been

devised. Huges et al. [11] were reportedly the first to use projection methods in combination

with spectral methods. Finally, Streett et al. [12] applied the semi-implicit projection method

to large-scale problems and also formulated a discretized version of the same.

Domain decomposition as a method for parallelization was pioneered in Computational

Fluid Dynamics by Gropp et al. [13]. They highlighted the benefits of domain decomposition

pertaining to its flexibility in containing adaptive refinements and its modular pathway to

parallelism. A simple classical problem of flow over a backstep was solved to illustrate these

features. Carvalho et al. [14] extended over this work and implemented a variation of domain

decomposition using overlapping sections of the subdomains. They reported an accelerated

convergence of the algorithm as a result of increased overlapping. Recent work by Nestola et

al. [15] implemented overlapping domain decomposition on an immersed boundary method

for fluid-structure interaction.
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1.4 Current Emphasis

By virtue of their high accuracy, Spectral methods find application in scenarios where it is

necessary to solve the full Navier-Stokes equation. The full-solutions contribute to enhanced

understanding and knowledge about certain fundamental flow phenomena. Firstly, Direct

Numerical Simulation (DNS) of turbulent flows is an important application of spectral

methods. Secondly, they are also used in stability analysis where it is critical to refine

the base flow accurately for applying perturbations.

Presently, we are developing spectral codes that would be solved through a parallel

architecture and used for Large Eddy Simulations (LES). We have focused on developing

solution schemes for incompressible flows and tested them on certain fundamental fluid flow

and heat transfer problems. For parallelization, work has been done on TDMA sweeps and

Domain Decomposition. The results have been validated using available analytical solutions

and benchmark results in prevalent literature.

1.5 Problems Solved

The present work comprises of various test problems to validate our spectral code and they

are listed as follows,

• Two-dimensional heat Conduction in a rectangular plate

• Plane Poiseuille flow

• Lid-driven flow in a square cavity

• Natural convection in a square cavity

• Two-dimensional heat conduction in a triangular plate
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1.6 Organization of The Report

This chapter provides a background for parallel computing. We have provided a description

of different architectures used in parallel computing. Then we described some of relevant

terms to study different algorithms for parallel programs. In the first half of this report,

spectral codes have been developed for solving fluid flow and heat transfer problems. The

parallelization part follows the code development and is divided into two parts - parallel

computing of FDM codes and parallel computing of Spectral codes.

Parallelization of FDM codes for the following problems is presented:

• One Dimensional Heat conduction

• Two Dimensional Heat conduction

Spectral codes for the following problems have been parallelized:

• One Dimensional Heat conduction

• Two Dimensional Heat conduction

• Channel flow

• Lid driven cavity

The computations proceed in a structured manner describing the governing equations,

spatial and temporal discretization and special treatment demanded by triangular domains.

Thereafter, the problems are considered and each one comprises of,

• Physical system description

• Governing equation under assumptions

• Results

• Conclusion
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Chapter 2

CFD Computations using Spectral

Methods

2.1 Mathematical Treatment

2.1.1 Governing Equations

The problems discussed in this study are confined to two dimensions and so all the dimensional

form of governing equations have been expressed accordingly.

Heat Conduction

The two dimensional heat conduction equation can be represented as,

ρ cp
∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+ Ṡgen

Fluid flow and Heat transfer

The dimensional form of governing equations can be represented as follows.

Continuity Equation,

∂u

∂x
+
∂v

∂y
= 0
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x-momentum equation,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ bx

y-momentum equation,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ by

Energy convection,

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ Ṡgen

For natural convection the governing equations change slightly and are usually expressed in

their non-dimensional form. The equations that change are expressed below:

x-momentum equation,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Pr

(
∂2u

∂x2
+
∂2u

∂y2

)

y-momentum equation,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Pr

(
∂2u

∂x2
+
∂2u

∂y2

)
+GrPr2T

2.1.2 Spatial Discretization

The equations are spatially discretized using a Chebyshev collocation spectral method. The

collocation method has a characteristic that the numerical solution is forced to satisfy

governing equations exactly at the collocation points. Thereby if we wish to solve for a
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function u(x, t) on the domain [-1,1] then it may be approximated as

uN(x, t) =
N∑
k=0

ûk(t)Tk(x)

For the Chebyshev collocation method, Tk(x) represents chebyshev polynomials of order k.

The grids points serve for interpolation and are defined as the Chebyshev-Gauss-Lobatto

points,

xi = cos

(
πi

N

)
i = 0, 1, ....., N

These points correspond to extreme points of Chebyshev polynomials of order N,

TN(x) = cos
(
N cos−1 x

)
The expansion coefficients, ũk(t) may be evaluated using the inverse relation

ûk(t) =
2

Nck

N∑
i=0

uN(xi, t)

ci
cos

(
kπi

N

)
, k = 0, 1, ....., N

where ci and ck = 1 for i, k = 1, 2, ....., N − 1 and c0 = cN = 2.

The interpolation in collocation spectral method can also be expressed in terms of Lagrange

polynomials of order N , hi(x) such that hi(x) = δik, the Kronecker operator. The Lagrange

polynomials for the points considered may be represented by:

hi(x) =
(−1)i+1(1− x2)T ′N(x)

c̄iN2(x− xi)
, i = 0, 1, ....., N

where c̄i = 1 for i = 1, ....., N − 1 and c̄0 = c̄N = 2.
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The spatial derivative of uN(x, t) at the collocation points xi is evaluated using the

analytical derivatives of Lagrange polynomials,

u′N(xi, t) =
N∑
k=0

D
(1)
ik u(xk, t), i = 0, 1, ....., N

where D(1) is the Chebyshev collocation derivative matrix. It is given by the following

expression:

D
(1)
ik =



ci(−1)i+k

ck(xi − xk)
, i 6= k,

− xk
2(1− x2

k)
, 1 ≤ i = k ≤ N − 1,

2N2 + 1

6
, i = k = 0,

−2N2 + 1

6
, i = k = N.

The Chebyshev collocation second derivative matrix D(2) can be obtained by following the

relation D(2) = (D(1))2. The higher order derivatives are obtained in a similar manner that

is by multiplying D(1) successively.

2.1.3 Temporal Discretization

Projection Method

Projection method belongs to the predictor-corrector class of algorithms and is non-iterative

in nature. Pressure acts as a projection of the predicted velocity field to form a divergence

free space in this class of methods. Spectral methods offer high accuracy but as is the case

with most numerical schemes, there is a trade-off between accuracy and stability. This implies

that spectral methods when used with ill-conditioned temporal schemes can lead to largely

unstable behaviour.

We have used a second-order semi-implicit time integration scheme and in addition the
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spatial discretization is carried out using a Chebyshev collocation spectral method. The

time integration scheme is formed as a combination of Crank-Nicolson scheme acting on the

diffusive terms and Adams-Bashforth scheme acting on the convective terms. The projection

method partitions the solution of Navier-Stokes equations into two decoupled problems.

An intermediate velocity field is calculated using the Burgers equation and thereafter the

Poisson equation for pressure is used to correct the velocity field as to satisfy continuity. The

semi-implicit projection method discussed above can be described as follows:

a) Advection-Diffusion step which involves the intermediate velocity at (n+ 1)∆t, Ṽ

Ṽ − V n

∆t
=

1

Re
D(V )−NL(V ) in Ω

Boundary conditions for this intermediate velocity

τ̂ · Ṽ = τ̂ · V + τ̂ ·∆t(2∇P n −∇P n−1) on ∂Ω

n̂ · Ṽ = n̂ · V on ∂Ω

Here NL(V ) = (V ·∇)V and D(V ) = ∇2V represent the advection and diffusion terms.

b) Pressure correction step solves the Poisson equation for P n+1

∇2P n+1 =
∇ · Ṽ

∆t
in Ω

With homogeneous Neumann boundary conditions

n̂ · ∇P n+1 = 0 on ∂Ω
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Thereafter the velocities are updated as given below,

V n+1 = Ṽ −∆t∇P n+1 in Ω + ∂Ω

The combination of an explicit second-order Adams-Bashforth scheme for the advection terms

and an implicit Crank-Nicolson scheme for diffusion terms can be described as follows.

NL(V ) =
3

2
NL(V n)− 1

2
NL(V n−1)

D(V ) =
D(Ṽ ) +D(V n)

2

These expressions are used in the Burgers equation at each time step.

2.1.4 Treatment for Triangular domains

When extending spectral methods to triangular domains we transform the computational

domain to represent the physical system and thereby the derivatives in the physical space

and in the computations are different and related through chain rule [16].

A mapping is involved for transforming the derivatives and can be represented as given

below.

ζ, η - Physical system variables x, y - Computational domain variables

Domain Transformation

The computational and physical domains can be seen to be related in a particular way that

leads to the orientation of triangle as given in the figure. This transformation can be detailed

as follows:

ζ = −1

4
(1− x)(1− y) + 1
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η =
1

2
(y − 1)

The triangular domain so formed is given as {(ζ, η) : 0 ≤ ζ ≤ 1,−1 ≤ η ≤ 0, ζ + η ≥ 0}

mapped from the square computational domain.

The Inverse mapping is given as:

x =
2(ζ − 1)

η + 1
+ 1

y = 2η + 1

The derivatives can then be transformed and expressed as given below:

uζ =
2

η + 1
ux

uζζ =

(
2

η + 1

)2

uxx

uη = −2(ζ − 1)

(η + 1)2
ux + 2uy

uηη =
4(ζ − 1)2

(η + 1)4
uxx −

8(ζ − 1)

(η + 1)2
uxy +

4(ζ − 1)

(η + 1)3
ux + 4uyy

So finally the laplacian in the physical coordinates can be written in terms of those in the

computational domain as:

∆u =

{(
2

η + 1

)2

+
4(ζ − 1)2

(η + 1)4

}
uxx −

8(ζ − 1)

(η + 1)2
uxy +

4(ζ − 1)

(η + 1)3
ux + 4uyy

This transformation has been applied to a heat conduction problem in a triangular plate

discussed in the subsequent sections.
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2.2 Two Dimensional Heat Conduction

Heat conduction problems play an important role as preliminary tests for validating the code

structure and proper running. In this case we have considered a simple steady state problem

for which analytical solutions exist ensuring proper validation.

2.2.1 Physical System

The physical system consists of a square plate which has three adjacent sides at the same

temperature (Tc) as shown in Fig. 2.1. The remaining side is kept at a higher temperature

(Th) and the source terms are taken to be zero giving a source-less heat diffusion through the

plate.

Plate length is represented as L and width is represented as W. Constant temperatures

are applied at the four edges. Thermal diffusivity of the material is assumed to be unity as

it serves just a scaling factor as far as computations are concerned.

Fig. 2.1: 2D Heat conduction

The heat conduction is assumed to be steady and the effects from generation terms
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have been neglected. The thermophysical properties are assumed to be independent of

temperature.

Governing Equation

Under the assumption of Steady state and zero generation in the plate the governing equation

reduces to a laplace equation.

∂2T

∂x2
+
∂2T

∂y2
= 0

Boundary Conditions

At the left, right and bottom wall:

Tc = 300K

At the top wall:

Th = 400K

2.2.2 Results and Validation

Validation of the results is carried out by comparing with analytical solution available in

Holman [17], the expression of which is shown below:

T − Tc
Th − Tc

=
2

π

∞∑
n=1

(−1)n+1 + 1

n
sin

nπx

W

sinh(nπy/W )

sinh(nπH/W )

Temperature values along a horizontal center line are calculated using the analytical expressions

and plotted along with the numerical results. An infinite sequence is surfaced in the exact

solution and so we have to limit it at a certain n to enable numerical computation of

temperatures. Cut-off limit is set by considering the difference between successive summation

series and the series is terminated when the difference goes below 10−12.The plot shown in

Fig. 2.3 gives the comparison along domain’s horizontal mid-line.
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Fig. 2.2: Temperature contours

Fig. 2.3: Mid-line profile comparison
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We observe that the mid-line numerical solution plot coincides exactly with the analytical

solution. This validation serves as an important check to guarantee that our solution

technique can accurately tackle the most fundamental problems. So we conclude from this

problem that our code can accurately handle pure diffusion and diffusion related terms in

general governing equations.
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2.3 Channel Flow

Code for solving Incompressible fluid flow is validated using various test case studies. The

classical problems related to incompressible flows like 2D Channel flow and Lid-driven Cavity

flow are simulated to examine their accuracy.

The model represents a channel formed by placing two infinite plates parallel to each

other in the physical domain. A fully developed profile is used as inlet condition and the

emphasis is to resolve the convective terms accurately.

2.3.1 Physical System

Physical system consists of a 2D channel formed by placing two infinite plates parallel to

each other separated by a unit distance, as shown in Fig. 2.4. Flow is assumed to be fully

developed at the inlet and gradients along the downstream directions are set to zero for

velocity and pressure at the outlet. No-slip boundary conditions are imposed at the top and

bottom wall for velocity and the normal pressure gradients are set to zero.

Channel length is represented as L and width is represented as W . The flow Reynolds

number is set to 100 and a transient solution technique is adopted.

Fig. 2.4: 2D Channel flow

The flow is assumed to be time dependant and incompressible. Body forces are assumed

20



to be absent and fluid properties like density and viscosity are taken to be constants.

Boundary Conditions

A fully developed flow profile is fixed at the inlet and no-slip boundary condition is applied

at the walls. Streamwise gradients are set to zero for the velocity boundary conditions at the

outlet. For pressure, the gradients normal to surfaces are set to zero at the four boundaries.

The boundary conditions can be given in the mathematical format as shown below:

At top and bottom wall:

u = 0, v = 0,
∂p

∂y
= 0

At the left wall (inlet):

u = 1− y2, v = 0,
∂p

∂x
= 0

At the right wall (outlet):

∂u

∂x
= 0,

∂v

∂x
= 0,

∂p

∂x
= 0

2.3.2 Results

Channel flow problem was solved for a Re = 100 and the velocity vectors were plotted to

visualize the flow profile at subsequent downstream positions as shown in Fig. 2.5.

The velocity vectors are in correspondence to our expectations and analytical solutions.

Thus in conclusion this problem validates passive transport handling capacity of our code

and we further move on to consider additional complications.
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Fig. 2.5: Velocity vectors

2.4 Lid-driven Square Cavity

This is a classic problem for realizing internal recirculating flows within a bounded domain

and display several critical fluid flow phenomena in a relatively simplistic geometrical setting.

The physical model represents a square cavity with a driven lid on top to induce the

recirculation.

2.4.1 Physical System

A square cavity with lid on its top surface is considered as the physical model, as shown in

Fig. 2.6. The lid is assigned a horizontal velocity based on profile that remains consistent

with zero velocity at the extreme points. No-slip boundary condition is applied at three

remaining boundaries. Gradients of pressure normal to the boundaries are set to zero with a

special treatment considered later.

The cavity length is defined as L while the height is specified as W . Non-dimensional form

of Navier-Stokes equation is used for this problem and so fluid properties have been included

in the Reynolds Number. Change in Reynolds number would reflect different working fluids.

Flow is assumed to be incompressible and a transient analysis is carried out. Body forces
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Fig. 2.6: Lid-driven cavity

have been neglected and it is valid to assume the characteristic length as the lid dimension.

Characteristic velocity is taken to be the average velocity over the lid.

Boundary Conditions

Lid is driven at a velocity which varies along its length and is zero at the boundaries so as

to be conformal. Rest of the boundaries are supplied with no-slip conditions.

We had an interesting observation for the pressure boundary conditions which involve

gradients at each side. Incompressible flows deal with the gradients of pressure at every stage

and the values of pressure themselves do not have any role here. Even in this problem we

have a poisson equation governing pressure and the boundary conditions work with gradients.

But, in solving the equations numerically pressure becomes unconstrained and it is thereby

advised to set the pressure as zero at a point in the computational domain. We have set the

pressure to be zero at the square’s center.

At left and right wall:

u = 0, v = 0,
∂p

∂x
= 0

At the bottom wall:

u = 0, v = 0,
∂p

∂y
= 0
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At the lid:

u = 16x2(1− x2), v = 0,
∂p

∂y
= 0

At the domain’s center point:

p = 0

2.4.2 Results and Validation

The computations have been carried out at a range of Reynolds number starting from 100 to

2000. Additional definitions of streamfunction and vorticity are introduced in post processing

to examine the streamlines and for quantitative validation.

Vorticity is computed at each time step using,

ωn+1 =
∂vn+1

∂x
− ∂un+1

∂y

The streamfunction ψ is computed using the Poisson equation,

∇2ψn+1 = −ωn+1 in Ω

ψn+1 = 0 on ∂Ω

The results were qualitatively validated by comparing the streamfunction contours and

the center-line velocity profiles with previous work by Martinez et al, as shown in Fig. 2.7,

Fig. 2.8 and Fig. 2.9. N represents elements in the x-direction and M represents y-direction

elements. A mesh of 33 × 33 has been used with a time step of 10−3 to guarantee high

precision of the results and stability of the method. The Chebyshev-Gauss-Lobatto grid

points are beneficial in this probelm due to their condensed distribution at the corners which

helps in refining the secondary vortices appropriately.

Convergence is assessed by considering the flow at two values of Re = 100 and 400.

Comparisons of some characteristic flow variables are made with those of Botella [8] who
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used a third order accurate Chebyshev projection scheme, and Ehrenstein and Peyret [18],

who used a vorticity-stream function formulation based on Chebyshev collocation method.

The comparisons are carried out for different spatial resolutions on the maximal value of

streamfunction |ψ| on the inner collocation points and the maximum vorticity value |ω| on

the moving lid.

M1 = max|ψ(xi, yi)| on the inner collocation points

M2 = max|ω(xi, 1)| on the collocation points of the lid y = 1

Table 2.1: Comparison of flow variable M1 for the square driven cavity at Re = 100.

N = M M1 M1 |% Difference|
Present
Method

Botella
(1997)

Botella
(1997)

17 8.3096E-02 8.3160E-02 0.0770
21 8.2656E-02 8.2694E-02 0.0460
25 8.3285E-02 8.3315E-02 0.0360
33 8.3381E-02 8.3402E-02 0.0252

Table 2.2: Comparison of flow variable M2 for the square driven cavity at Re = 100.

N = M M2 M2 M2 |% Difference| |% Difference|
Present
Method

Botella
(1997)

Ehrenstein &
Peyret(1989)

Botella
(1997)

Ehrenstein &
Peyret(1989)

17 13.3358 13.3467 13.3687 0.0877 0.2521
21 13.1845 13.1759 13.1780 0.0615 0.0455
25 13.4273 13.4226 13.4227 0.0328 0.0320
33 13.3431 13.3423 13.3422 0.0052 0.0060

Tables 2.1 to 2.4, display the comparison of the characteristic flow variables with benchmark

solutions prevalent in literature. For Re = 100, the relative errors as shown in Table 2.1 for

M1 and Table 2.2 for M2 are less than 0.3% when compared with results obtained by Botella

[8] and by Ehrenstein and Peyret [18] for a grid of N = M > 17. But for Re = 400, a grid

of N = M > 21 gives relative errors in M1 and M2 less than 0.2% when compared with the

same standards, as shown in Table 2.3 and Table 2.4.
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Table 2.3: Comparison of flow variable M1 for the square driven cavity at Re = 400.

N = M M1 M1 |% Difference|
Present
Method

Botella
(1997)

Botella
(1997)

17 8.5335E-02 8.5777E-02 0.5153
21 8.5107E-02 8.5192E-02 0.0998
25 8.5664E-02 8.5716E-02 0.0607
33 8.5461E-02 8.5480E-02 0.0222

Table 2.4: Comparison of flow variable M2 for the square driven cavity at Re = 400.

N = M M2 M2 M2 |% Difference| |% Difference|
Present
Method

Botella
(1997)

Ehrenstein &
Peyret(1989)

Botella
(1997)

Ehrenstein &
Peyret(1989)

17 24.7258 24.7799 25.2329 0.2216 2.0128
21 24.6237 24.6268 24.6693 0.0154 0.1877
25 24.9212 24.9157 24.9344 0.0213 0.0537
33 24.7873 24.7845 24.7845 0.0101 0.0101

On observing the relative errors in variables we conclude that for N = M = 33 we get

accurate results without compromising the computational speed and thus all the qualitative

results have been calculated based on that grid count.

Our results are in good agreement with the benchmark solutions both qualitatively and

quantitatively as shown by the plots and tables. Thus in conclusion we have the assurance

that the code is able to handle bounded fluid flow problems efficiently.
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(a) Re=100 (b) Re=100 (Martinez et.al. [19])

(c) Re=400 (d) Re=400 (Martinez et.al. [19])

Fig. 2.7: Steady state streamlines comparison for Re = 100, 400
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(a) Re=1000 (b) Re=1000 (Martinez et.al. [19])

(c) Re=2000 (d) Re=2000 (Martinez et.al. [19])

Fig. 2.8: Steady state streamlines comparison for Re = 1000, 2000
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(a) u-velocity (b) u-velocity (Martinez et.al. [19])

(c) v-velocity (d) v-velocity (Martinez et.al. [19])

Fig. 2.9: Variation of velocity along the center-line of the driven cavity for different Re
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2.5 Natural Convection

Natural convection in a square cavity is considered here at different Rayleigh numbers and

compared with existing benchmark solutions. This study will help in validating our code for

heat transfer applications and is in a way an extension of the lid-driven problem.

2.5.1 Physical System

Physical system consists of a square cavity which has two opposite sides adiabatic and the

other two at two distinct temperatures. The left wall is kept at a temperature Th and the

right wall is kept at a temperature Tc. The cavity length is specified by L and the height of

the cavity is defined as H, as shown in Fig. 2.10. Adiabatic wall condition is applied at the

top and bottom of the domain.

Fig. 2.10: Natural convection in a square cavity

Natural convection is assumed to be transient and incompressible in nature. Buoyancy
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force caused by density variation is taken into account using the Boussinesq approximation.

The thermophysical properties are assumed to be invariant with temperature and the body

forces are neglected.

Boundary Conditions

No-slip boundary conditions are applied at the walls. Pressure gradients normal to the

boundary surfaces are set to zero and additionally pressure at the center of domain is set to

zero. The left and right walls are set to constant high and low temperature respectively. The

other walls are treated as adiabatic and the boundary conditions are expressed as follows,

At the left wall:

u = 0, v = 0,
∂p

∂x
= 0, T = 1

At the right wall:

u = 0, v = 0,
∂p

∂x
= 0, T = 0

Top wall and bottom wall:

u = 0, v = 0,
∂p

∂y
= 0,

∂T

∂y
= 0

At the domain’s center:

p = 0

2.5.2 Results

The streamfunction and Temperature contours are plotted for this problem and qualitatively

compared with standard benchmark results, as shown in Fig. 2.11.

We can conclude by observing the concurrency of our results with prevalent benchmark

solutions that our scheme and code works in solving bounded heat transfer problems. Natural

convection in a square cavity serves as a fundamental test case for such prepositions.

31



(a) Present Method (b) Saitoh et al. [20]

(c) Present Method (d) Saitoh et al. [20]

Fig. 2.11: Comparison of streamfunction contours [a,b] and isotherms [c,d] for Ra = 107

2.6 Heat Conduction: Triangular Domain

Spectral methods have a main limitation of being used specifically for regular computational

domains and offer challenges when extended to non-regular ones. In this problem we attempt

to solve a heat conduction problem for a triangular domain with constant but distinct

temperature at the boundaries.

2.6.1 Physical System

The physical model consists of a triangular plate with sides maintained at constant but

different temperatures. A right angled triangular plate is considered as our physical system

with an orientation conformal to our mapping.
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Plate length is specified as L and the width is specified as W , as shown in Fig. 2.12.

Moreover the present case considers a right-angled isosceles triangle. The solution approach

here is to map the coordinates and derivatives from the rectangle to triangular domain.

There is a singularity in the transformation where all the derivatives do not exist and this

needs to be tackled appropriately to get physically realistic solutions.

Fig. 2.12: Heat conduction in a triangular plate

Boundary Conditions

At the side wall:

T1 = 500K

At the top wall:

T2 = 400K

At the hypotenuse:

T3 = 300K

The domain is discretized using Chebyshev Gauss-Lobatto grid points and derivative
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matrices are obtained by expressing the solution in terms of Chebyshev polynomials. A grid

size of 30×30 is used in the analysis and is found to be sufficient considering the high accuracy

and global nature of spectral methods. The horizontal side at y = −1 in the computational

domain is the source of singularity in the derivatives and so we tackled this issue by assigning

all the values at this y-level in the derivative matrices to zero.

2.6.2 Results

The isotherms were plotted for this problem and compared with a heat conduction problem

solution from the commercial solver ANSYS, as shown in Fig. 2.13. Contours are compared

and so this is a qualitative test but is rendered sufficient for bolstering credibility.

(a) Chebyshev collocation result (b) ANSYS result

Fig. 2.13: Isotherms for the triangular plate

The ANSYS model had roughly 20, 000 elements and the upper and right side walls were

partitioned into 200 equal sections. The left wall was divided into 283 elements so as to

maintain equal element length across the boundaries. Finally, a global element sizing of

5× 10−3 was enforced to get sufficient refinement near the center of the domain.

Through this problem we can conclude that simple diffusive terms can be handled properly.
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Chapter 3

Parallelization of FDM Codes

3.1 1D Heat Conduction

Here we consider 1D heat conduction and use different methods to solve the same numerically.

For static heat conduction,

∂2T

∂x2
= S (3.1)

We will discuss some methods to solve 1D-conduction problems with varying number of

points using different methods. We have considered the physical system depicted in fig. 3.1

with boundary conditions as Tleft = 300K and Tright = 400K

Fig. 3.1: 1D Heat conduction

Equation 3.1 is discretized using finite difference method to obtain a system of linear equations,

solution of which gives the temperature distribution along the discrete points considered.

aiTi = biTi+1 + ciTi−1 + di where i = 1, 2, 3, ...., N (3.2)
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To account for the boundary points,

c1 = 0 and bN = 0 (3.3)

3.1.1 Jacobi Iterative Method

Jacobi method is an iterative method to solve a system of linear equations (Ax = b) which

starts with some initial guess. The result x at an iteration k is evaluated using the following

approach,

σi =
n∑

j=1, j 6=i

aijx
(k)
j where i = 1, 2, 3, ...., N (3.4)

x
(k+1)
i =

1

aii
(bi − σi) where i = 1, 2, 3, ...., N (3.5)

For the purpose of parallelization we have computed for different xi in parallel during each

iteration. Each processor is assigned a block of rows (xi) dynamically using the

!$OMP DO SCHEDULE(dynamic, [chunk size]) constuct.

No. of points Serial execution
Clock time (s)

Parallel
execution Clock

time (s)

Observed
speed-up

100 0.7445 0.2052 3.6281
200 10.4809 2.7152 3.8601

Table 3.1: Jacobi iterative method

The table 3.1 shows that the observed speed - up of the parallel code against the serial

code is around 3.6 to 3.8. We used a quad - core CPU so the ideal speed-up is limited to 4.

3.1.2 Domain Decomposition in Space

In spatial domain decomposition method the physical domain is divided into a number of

sub-domains. We will use Tri-Diagonal Matrix Algorithm (TDMA)to solve each sub-domain

individually. In parallel version each domain is solved by a different core. Initially we

implemented for two sub-domains which was later extended to N domains. An initial guess
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Fig. 3.2: Temperature distribution using Jacobi method

is made for the interface temperature and heat flux which serves as the boundary conditions

for the sub-domains. We then solve the two sub-domains in an iterative process. At the

interface of two sub-domains,

Ti, left =
Ti, left + Ti, right

2
(3.6)

Qi, right =
Qi, left +Qi, right

2
(3.7)

We use the following termination conditions,

|Qi, left −Qi, right| < ε1 and |Ti, left − Ti, right| < ε2 (3.8)

No. of points Iterations
required

Serial
execution

Clock time (s)

Parallel
execution

Clock time (s)

Observed
speed-up

1000 32 4.65616E-3 2.53811E-3 1.8345
2000 35 1.11364E-2 5.97120E-3 1.8650

Table 3.2: Domain decomposition with two subdomains

Table 3.2 shows the results for domain decomposition using two sub-domains. We can
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see that the observed speed-up is close 2. Here we are restricted to use only two cores for the

parallel code as we are limiting to use only two sub-domains.

No. of points Iterations
required

Serial
execution

Clock time (s)

Parallel
execution

Clock time (s)

Observed
speed-up

1000 153 9.22481E-3 2.82501E-3 3.2654
2000 158 1.74712E-2 5.10879E-3 3.4112

Table 3.3: Domain decomposition with four subdomains

Table 3.3 shows the results for domain decomposition using four sub-domains. Though

we can see a speed-up of about 3.2 to 3.4 however, the execution time for the serial code with

four sub-domains is actually more than that for two sub-domains (comparing to results of

table 3.2). The execution time for parallel version of code with four sub-domains is slighlty

less than that for two sub-domains. We can also notice that the number iterations required

have increased. This can be explained by looking at how the information travels from the

left end to the right end. With four sub-domains we have three interfaces which obstruct the

flow of information in a single go. But as we solve the sub-domains parallely the execution

time is slightly less.

This may give a notion that domain decomposition isn’t a useful method. But we should

note that we have taken the initial guess at interface as random, which can be improved if

we first use a coarse mesh to get initial guesses.

In this chapter we provided details of the Jacobi iterative method and Domain decomposition

method which we have used to solve the 1D heat conduction problems using parallel computing.

We can see that the domain decomposition method using TDMA is much faster than Jacobi

iterative method. We also saw that for domain decomposition method as the number of

sub-domains increased the execution time increased as our initial guesses were random.
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Fig. 3.3: Temperature distribution using domain decomposition

3.2 2D Heat Conduction

Here we consider 2D heat conduction and use different numerical methods to solve the

same with varying grid size. For a 2-D domain with uniform conductivity, the static heat

conduction equation,

∂2T

∂x2
+
∂2T

∂y2
= S (3.9)

We have considered the physical system depicted in fig. 3.4 with boundary conditions as

Tbottom = 300 K and T = 400K on other three sides. Equation 3.9 is discretized using

finite difference method to obtain a system of linear equations, solution of which gives the

temperature distribution along the discrete points considered.

Using finite difference discretization,

2(1 + h2)TP = TEast + TWest + h2(TNorth + TSouth)− S∆x2 (3.10)

where, h = ∆x
∆y
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Fig. 3.4: 2D Heat conduction

3.2.1 TDMA Sweeps

TDMA Sweeps is line-by-line method to solve 2-D and 3-D systems which combines Gauss-Seidel

and TDMA methods. The grid points along a line are solved iteratively using TDMA. The

other terms are treated as constant for solving the grid points along the chosen line as shown

in fig. 3.5.

Fig. 3.5: TDMA line-by-line method [Patankar [1]]

The region is sweeped line-by-line in two directions using TDMA alternatively, first in
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horizontal direction then in vertical direction. We have used the following condition for

termination incorporating l2 norm given as,

||X −Xprev||2 < ε (3.11)

Grid size Serial execution
Clock time (s)

Parallel
execution Clock

time (s)

Observed
speed-up

100 x 100 1.4427 0.6469 2.230
200 x 200 19.9946 8.4437 2.368

Table 3.4: TDMA sweeps method

Table 3.4 shows the results for TDMA sweeps for 2-D heat conduction. The observed

speed - up is around 2.3 even though we used four processors. This could be due to the

overhead of calculating the norm of X −Xprev at each iteration.

Fig. 3.6: Temperature distribution using TDMA sweeps
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3.2.2 Domain Decomposition with Two Sub-Domains

Similar to 1-D domain decomposition the domain is divided into multiple sub-domains, the

only difference being the sub-domains are rectangular. TDMA sweeps has been used to solve

each rectangular sub-domain. Similar to 1D domain decoposition each domain is solved

by a different core concurrently in the parallel version of the code. For now it has been

implemented for two subdomains which will be extended to N domains later. At the interface

of two sub-domains,

TiNx1,left =
TiNx1,left + Ti1,right

2
where i = 1, 2, ...., Ny (3.12)

Qi1,right =
QiNx1,left +Qi1,right

2
where i = 1, 2, ...., Ny (3.13)

Grid size Iterations
required

Serial
execution

Clock time
(s)

Parallel
execution

Clock time
(s)

Observed
speed-up

100 x 100 5 7.74840 5.03571 1.5386
200 x 200 6 98.70741 62.33654 1.5835

Table 3.5: 2D domain decomposition with two sub-domains

Table 3.5 shows the results for 2-D domain decomposition using two sub-domains. Though

we can see a speed-up of about 1.5 to 1.6 however, the execution time for code with two

sub-domains is actually more than that for TDMA Sweeps (comparing to results of table

3.4). It should also be noted that the number of iterations of TDMA sweeps for domain

decomposition is 5-6 whereas if we use TDMA sweeps alone only one iteration of TDMA

sweeps is required.

This can explained by looking at how the information travels from left end to the right

end in domain decomposition. Similar to 1-D the interface of two sub-domains obstructs the

flow of information in a single go. As in 1-D the initial guess for temperature and heat flux is

taken to be random which can be improved by using results of coarse mesh as initial guess.
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Fig. 3.7: Temperature distribution using domain decomposition

TDMA sweeps was found to be better as with domain decomposition method the interface

obstructs the flow of information. While using a uniform mesh we find TDMA sweeps to

be of more use however, to solve non-uniform mesh domain decomposition will be greater

use. Domain decomposition can further be improved by using coarse mesh to get the initial

guesses.
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Chapter 4

Parallelization of Spectral Codes

Spectral methods use a predefined Chebyshev grid for the given number of elements and

computational domain. The Chebyshev grid is characteristically fine at the corners but

relatively coarser in the mid-section of the domain. As a result, in problems involving

resolution of flow phenomena near the center of the domain we must resort to higher number

of elements. Moreover, spectral methods exhibit consistent accuracy above a threshold

grid size implying that further refinements would increase computations without improving

accuracy. Thus partitioning the domain and solving each of them using spectral method

would result in refinements within the domain.

4.1 One Dimensional Heat Conduction

In this section we solve the simplest problem of one-dimensional heat conduction to develop

the framework for domain decomposition in spectral methods.

4.1.1 Physical System

The physical model can be thought to be a slender rod with sides maintained at constant

but different temperatures. This slender assumption retains the one-dimensional nature of

the problem.
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Rod length is specified as L as shown in Fig. 4.1. Moreover, the width is neglected in

comparison to length of the rod giving a one-dimensional domain.

Fig. 4.1: 1D Heat conduction

Boundary Conditions

At the left side:

T1 = 100K

At the right side:

T2 = 0K

At the left side of interface:

T = Ti,left

At the right side of interface:

∂T

∂x
= −qi,right

The domain is discretized using Chebyshev Gauss-Lobatto grid points and derivative matrices

are obtained by expressing the solution in terms of Chebyshev polynomials. The boundary

conditions at the interface are updated at each iteration using the following formulation:

Tinter =
Ti,left + Ti,right

2

qinter =
qi,left + qi,right

2
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Boundary conditions at the interface are then updated to Tinter and qinter for the next iteration,

that is Tinter is assigned to Ti,left and qinter is assigned to qi,right.

4.1.2 Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined corresponding to temperature and heat flux values at the

two sides of the interface and are based on the maximum difference of values at the interface.

errorT = max(abs(Ti,left − Ti,right))

errorq = max(abs(qi,left − qi,right))

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 1.16 to 1.51. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.1 summarizes the results.

Table 4.1: Comparison of serial, parallel times and speed-up over various grid sizes for 1D
conduction.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

30 0.198 0.171 1.16
40 0.358 0.280 1.28
50 0.570 0.432 1.32
60 0.838 0.574 1.46
70 1.174 0.785 1.51
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4.2 Two Dimensional Heat Conduction

4.2.1 Domain Decomposition with Two Subdomains

In this problem we extend our knowledge of domain decomposition in one-dimensional

problems to two-dimensional ones. This section deals with dividing the domain into two

parts and solving them individually using spectral method.

Physical System

The physical model consists of a rectangular plate with sides maintained at constant but

different temperatures. A partition is made at the center of the plate in the computational

domain but the final solution is reflected as a whole.

Plate length is specified as L and the width is specified as W , as shown in Fig. 4.2.

Moreover the partition is made at length 0.5L giving us two sub-domains each of length 0.5L

and width W .

Fig. 4.2: 2D Heat conduction - two subdomains

Boundary Conditions

At the top wall:

Th = 400K

48



At the left, right and bottom wall:

Tc = 300K

At the left side of interface:

T = Ti,left

At the right side of interface:

∂T

∂x
= −qi,right

The domain is discretized using Chebyshev Gauss-Lobatto grid points and derivative matrices

are obtained by expressing the solution in terms of Chebyshev polynomials. Similar to the

one-dimensional case, boundary conditions at the interface are updated at each iteration

using the following formulation:

Tinter =
Ti,left + Ti,right

2

qinter =
qi,left + qi,right

2

Boundary conditions at the interface are then updated to Tinter and qinter for the next iteration,

that is Tinter is assigned to Ti,left and qinter is assigned to qi,right.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined corresponding to temperature and heat flux values at the

two sides of the interface and are based on the maximum difference of values at the interface.

errorT = max(abs(Ti,left − Ti,right))

errorq = max(abs(qi,left − qi,right))
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Comparing the numerical solution with analytical result we observe that they coincide exactly

thereby verifying spectral accuracy. Also, refinements near the center can be observed in plot

4.3 with concentrated points at the corners and center.

Fig. 4.3: Midline profile comparison

Solutions from both the domains were combined finally to constitute an overall temperature

field. Thereafter, a temperature contour plot shown in Fig 4.4 helped in assuring continuity

among the results from the left and right sub-domains.

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 1.38 to 1.89. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.2 summarizes the results.
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Fig. 4.4: Temperature contour plot for two subdomains

Table 4.2: Comparison of serial, parallel times and speed-up over various grid sizes for 2D
conduction with two subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

20× 20 1.027 0.746 1.38
30× 30 9.693 5.584 1.74
35× 35 23.635 12.910 1.83
40× 40 51.222 27.329 1.88
50× 50 190.84 101.24 1.89

4.2.2 Domain Decomposition with Four Subdomains

This section extends over the previous case and deals with dividing the domain into four

parts, solving them individually. This formulation serves crucial for extending the algorithm

to domain decomposition involving multiple sub-domains.
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Physical System

The physical model consists of a rectangular plate with sides maintained at constant but

different temperatures. Partition are made at the center of the plate in the computational

domain but the final solution is reflected as a whole.

Plate length is specified as L and the width is specified as W , as shown in Fig. 4.5.

Moreover partitions are made at length 0.5L and width 0.5L, giving us four sub-domains

each of length 0.5L and width 0.5W .

Fig. 4.5: 2D Heat conduction - four subdomains

Boundary Conditions

At the top wall:

Th = 400K

At the left, right and bottom wall:

Tc = 300K

Interface boundary conditions are critical for this problem because it was observed that
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having two Neumann boundary conditions in a domain leads to divergence. These boundary

conditions are initially random guesses which are updated every iteration to finally give a

physically realistic result. So the interface conditions follow the pattern given in fig 4.5

The domain is discretized using Chebyshev Gauss-Lobatto grid points and derivative

matrices are obtained by expressing the solution in terms of Chebyshev polynomials. Similar

to the one-dimensional case, boundary conditions at the interface are updated at each

iteration using the following formulation:

Tinter =
Ti,left + Ti,right

2

qinter =
qi,left + qi,right

2

Boundary conditions at the interface are then updated to Tinter and qinter for the next iteration,

that is Tinter is assigned to Ti,left and qinter is assigned to qi,right.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined corresponding to temperature and heat flux values at the

two sides of the interface and are based on the maximum difference of values at the interface.

errorT = max(abs(Ti,left − Ti,right))

errorq = max(abs(qi,left − qi,right))

Comparing the numerical solution with analytical result we observe that they coincide exactly

thereby verifying spectral accuracy. For this problem we have two mid-lines and the values

of temperature are compared along these as shown in Fig. 4.6 and Fig. 4.7. In addition,

refinements at the center of the domain can be observed by the clustering of points near the

corners and mid-portion of the plots.
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Fig. 4.6: Vertical midline profile comparison

Fig. 4.7: Horizontal midline profile comparison
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Solutions from all four domains were combined finally to constitute an overall temperature

field. Thereafter, a temperature contour plot shown in Fig 4.8 helped in assuring continuity

among the results from the four sub-domains together.

Fig. 4.8: Temperature contour plot for four subdomains

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 2.43 to 2.71. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.3 summarizes the results.

Table 4.3: Comparison of serial, parallel times and speed-up over various grid sizes for 2D
conduction with four subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

20× 20 6.76 2.782 2.43
30× 30 54.964 21.811 2.52
35× 35 120.47 46.694 2.58
40× 40 235.43 89.178 2.64
50× 50 746.68 275.528 2.71
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4.3 Channel Flow

4.3.1 Domain Decomposition with Two Subdomains

This section extends the algorithm of domain decomposition in spectral methods to fluid

flow problems. Previous problems established the method for elliptic equations covered

predominantly using heat conduction. Current section deals with a simple problem involving

fully developed flow between two parallel plates.

Physical System

The physical model consists of a fully developed flow between two infinite parallel plates

separated by a unit distance. Flow is assumed to be fully developed at the inlet and gradients

along streamwise directions are set to zero for velocity and pressure at the outlet. The top

and bottom walls have a no-slip boundary condition for velocity and zero normal pressure

gradients.

Plate length is specified as L and the width is specified as W , as shown in Fig. 4.9.

Moreover, a partition is made at length 0.5L, giving us two sub-domains each of length 0.5L

and width W . Reynolds number is set to 10 and a transient solution technique is adopted.

Flow is assumed to be incompressible with constant fluid properties and the body forces

are assumed to be absent. The grid generated by combining the two domains can be seen as

given in Fig. 4.10.

Boundary Conditions

A fully developed flow profile is provided at the inlet and no-slip condition is applied at the

walls. Streamwise gradients are set to zero for velocity at the outlet. Pressure gradients

normal to the surfaces are set to zero at the four boundaries.

At the interface, nature of boundary condition plays a major role in achieving convergence

of the iterative method. We observed that velocity derivatives need to be supplied at the left
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Fig. 4.9: Channel flow - two subdomains

Fig. 4.10: Combined grid layout for two subdomains

interface and pressure derivatives at the right interface.

At the top and bottom wall:

u = 0, v = 0,
∂p

∂y
= 0
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At the inlet:

u = 1− y2, v = 0,
∂p

∂x
= 0

At the outlet:

∂u

∂x
= 0,

∂v

∂x
= 0,

∂p

∂x
= 0

At the left interface:

∂u

∂x
=
∂u

∂x i
,

∂v

∂x
=
∂v

∂x i
, p = pi

At the right interface:

u = ui, v = vi,
∂p

∂x
=
∂p

∂x i

Interface values for primitive variables are updated after each iteration in the same way

as represented in the conduction problems involving Ti and qi.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined each for u, v velocity components and pressure at the

two sides of the interface, similar to temperature and heat flux errors defined in conduction

problems.

Solutions from both the domains were combined finally to constitute an overall field for

velocity components and pressure. Thereafter, a velocity vector plot given by Fig.4.11 helped

in ensuring function continuity at the interface and providing a qualitative idea of solution

accuracy.

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 1.65 to 1.79. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.4 summarizes the results.
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Fig. 4.11: Velocity vectors for channel flow with two subdomains

Table 4.4: Comparison of serial, parallel times and speed-up over various grid sizes for
channel flow with two subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

10× 20 13.555 8.215 1.65
15× 30 78.734 46.865 1.68
20× 40 271.54 157.87 1.72
30× 30 345.53 198.58 1.74
25× 50 694.41 387.94 1.79

4.3.2 Domain Decomposition with Four Subdomains

This problem considers a two-dimensional channel flow between infinite parallel plates with

four sub-domains. Current formulation serves as a foundation for observing the behaviour of

our algorithm in the presence of multiple sub-domains.
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Physical System

The physical model consists of a fully developed flow between two infinite parallel plates

separated by a unit distance. Flow is assumed to be fully developed at the inlet and gradients

along streamwise directions are set to zero for velocity and pressure at the outlet. The top

and bottom walls have a no-slip boundary condition for velocity and zero normal pressure

gradients.

Plate length is specified as L and the width is specified as W , as shown in Fig. 4.12.

Moreover, partitions are made at length 0.5L and width 0.5W , giving us four sub-domains

each of length 0.5L and width 0.5W . Reynolds number is set to 10 and a transient solution

technique is adopted.

Flow is assumed to be incompressible with constant fluid properties and the body forces

are assumed to be absent. Only derivatives are represented using Du,v and Dp in Fig. 4.12 to

preserve clarity and other interface boundary conditions should be taken as value assignment

type. The grid generated by combining the four domains can be seen as given in Fig. 4.13.

Fig. 4.12: Channel flow - four subdomains
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Fig. 4.13: Combined grid layout for four subdomains

Boundary Conditions

A fully developed flow profile is provided at the inlet and no-slip condition is applied at the

walls. Streamwise gradients are set to zero for velocity at the outlet. Pressure gradients

normal to the surfaces are set to zero at the four boundaries.

Building upon the previous problem, the interface boundary conditions play a cardinal

role in obtaining a correct solution. Fig. 4.12 shows the pattern in which boundary conditions

should be assigned extending from two subdomains.

At the top and bottom wall:

u = 0, v = 0,
∂p

∂y
= 0

At the inlet:

u = 1− y2, v = 0,
∂p

∂x
= 0
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At the outlet:

∂u

∂x
= 0,

∂v

∂x
= 0,

∂p

∂x
= 0

The interface boundary conditions are shown in Fig. 4.12. Interface values for primitive

variables are updated after each iteration in the same way as represented in the conduction

problems involving Ti and qi.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined each for u, v velocity components and pressure at the

two sides of the interface, similar to temperature and heat flux errors defined in conduction

problems.

Solutions from all four domains were combined finally to constitute an overall field for

velocity components and pressure. Thereafter, a velocity vector plot given by Fig.4.14 helped

in ensuring function continuity at the interface and providing a qualitative idea of solution

accuracy.

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 2.36 to 2.83. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.5 summarizes the results.
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Fig. 4.14: Velocity vectors for channel flow with four subdomains

Table 4.5: Comparison of serial, parallel times and speed-up over various grid sizes for
channel flow with four subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

10× 10 13.197 5.5919 2.36
15× 15 79.347 31.487 2.52
20× 20 255.39 96.739 2.64
25× 25 664.85 241.76 2.75
30× 30 1438.6 508.34 2.83

63



4.4 Lid Driven Cavity

4.4.1 Domain Decomposition with Two Subdomains

This section considers a slightly advanced fluid flow problem for realizing internal recirculating

flows within a bounded domain. The model physically represents a square cavity with a

driven lid to induce recirculation. Computational space is divided into two subdomains, each

of which is solved using spectral method exchanging information at the interface.

Physical System

A square enclosure with driven lid on its top surface is taken as the physical model,as shown in

Fig. 4.15. No-slip boundary condition is applied at the walls barring the lid which is driven

with a profile consistent with zero velocity at the edges. Normal to the surface pressure

gradients are set to zero.

Enclosure length is specified as L and the width is specified as W , as shown in Fig. 4.15.

Moreover, a partition is made at length 0.5L, giving us two sub-domains each of length 0.5L

and width W .

Flow is assumed to be incompressible with constant fluid properties and the body forces

are assumed to be absent.

Boundary Conditions

No-slip boundary condition is enforced over all the walls except the lid which is driven at

a velocity conformal to zero value at the edges. Pressure gradients normal to the boundary

surfaces are set to zero and in addition pressure value at the center of the cavity is taken to

be zero.

Building upon the previous problem, the interface boundary conditions play a cardinal

role in obtaining a correct solution. The resulting boundary conditions can be mathematically

given as,
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Fig. 4.15: Lid driven cavity - two subdomains

At the left and right wall:

u = 0, v = 0,
∂p

∂x
= 0

At the bottom wall:

u = 0, v = 0,
∂p

∂y
= 0

At the lid:

u = 16x2(1− x2), v = 0,
∂p

∂y
= 0

At the domain’s center point:

p = 0

At the left interface:

∂u

∂x
=
∂u

∂x i
,

∂v

∂x
=
∂v

∂x i
, p = pi
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At the right interface:

u = ui, v = vi,
∂p

∂x
=
∂p

∂x i

Interface values for primitive variables are updated after each iteration in the same way as

represented in the conduction problems involving Ti and qi.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined each for u, v velocity components and pressure at the

two sides of the interface, similar to temperature and heat flux errors defined in conduction

problems.

Solutions from both the domains were combined finally to constitute an overall field for

velocity components and pressure. Thereafter, a velocity vector plot given by Fig.4.16 helped

in ensuring function continuity at the interface and providing a qualitative idea of solution

accuracy.

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 1.78 to 1.91. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.6 summarizes the results.

Table 4.6: Comparison of serial, parallel times and speed-up over various grid sizes for lid
driven cavity with two subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

10× 20 38.855 21.829 1.78
15× 30 218.81 120.23 1.82
20× 40 730.47 392.73 1.86
30× 30 931.45 492.83 1.89
25× 50 1858.7 973.14 1.91
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Fig. 4.16: Velocity vectors for lid driven flow at Re = 10

4.4.2 Domain Decomposition with Four Subdomains

This section extends the previous problem dividing the computational domain into four

subdomains. Each of the subdomains share information at their interfaces and this problem

examines the characteristics of our algorithm with multiple subdomains.

Physical System

A square enclosure with driven lid on its top surface is taken as the physical model,as shown in

Fig. 4.17. No-slip boundary condition is applied at the walls barring the lid which is driven

with a profile consistent with zero velocity at the edges. Normal to the surface pressure

gradients are set to zero.

Enclosure length is specified as L and the width is specified as W , as shown in Fig. 4.15.

Moreover, partitions are made at length 0.5L and width 0.5W , giving four sub-domains each

of length 0.5L and width 0.5W .

67



Flow is assumed to be incompressible with constant fluid properties and the body forces

are assumed to be absent.

Fig. 4.17: Lid driven cavity - four subdomains

Boundary Conditions

No-slip boundary condition is enforced over all the walls except the lid which is driven at

a velocity conformal to zero value at the edges. Pressure gradients normal to the boundary

surfaces are set to zero and in addition pressure value at the center of the cavity is taken to

be zero.

Building upon the previous problem, the interface boundary conditions play a cardinal

role in obtaining a correct solution. Fig. 4.17 shows the pattern in which boundary conditions

should be assigned extending from two subdomains. The resulting boundary conditions can

be mathematically given as,
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At the left and right wall:

u = 0, v = 0,
∂p

∂x
= 0

At the bottom wall:

u = 0, v = 0,
∂p

∂y
= 0

At the lid:

u = 16x2(1− x2), v = 0,
∂p

∂y
= 0

At the domain’s center point:

p = 0

The interface boundary conditions are shown in Fig. 4.17. Interface values for primitive

variables are updated after each iteration in the same way as represented in the conduction

problems involving Ti and qi.

Results

The iterative method is carried out until the errors at interface are reduced to the order

below 10−6. Two errors are defined each for u, v velocity components and pressure at the

two sides of the interface, similar to temperature and heat flux errors defined in conduction

problems.

Serial and parallel run times were noted for five runs of the code based on different grid

sizes. The speed up was calculated for each case and was observed to be in accordance

with expectations ranging from 2.57 to 2.87. Speed up improved with refinements in grid

which is expected as significant computational load is effectively split between the processors

exhibiting a time advantage. Table 4.7 summarizes the results.

69



Table 4.7: Comparison of serial, parallel times and speed-up over various grid sizes for lid
driven cavity with four subdomains.

Number of grid
points (per
subdomain)

Serial Execution
Clock Time (s)

Parallel Execution
Clock Time (s)

Observed
Speed-Up

10× 10 33.836 13.924 2.43
15× 15 209.54 83.151 2.52
20× 20 733.16 284.17 2.58
25× 25 1786.4 676.67 2.64
30× 30 4020.7 1483.7 2.71
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Chapter 5

Conclusions

In this work, CFD solver for the computation of incompressible heat transfer and fluid flows

is developed. The solver for incompressible heat transfer and fluid flows is based on spectral

method. The parallelization of these codes is based on the domain decomposition method

using OpenMP.

For incompressible flows:

1. Heat conduction in rectangular domains has been verified with analytical solutions and

can be concluded to be coherent with the same.

2. Results for the Lid-driven cavity are in strong agreement with benchmarks and the

maximum percentage error is found to be less than 2%

3. Natural convection results of streamfunction contours and isotherms are found to be

matching high-accuracy solutions prevalent in literature.

4. Heat conduction in triangular domain has been successfully verified with results from

ANSYS and so the code can be asserted as applicable to non-rectangular domains for

conduction problems.

In conclusion these problems helped establish our algorithm as general for incompressible

fluid flow and heat transfer problems.
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For parallelization:

1. One dimensional and Two dimensional heat conduction codes formulated using FDM

were successfully parallelized using two and four subdomains.

2. Parallelization of Spectral codes for conduction was carried out using 1D and 2D

problems using two and four subdomains with speed up ranging from 1.69 to 2.73.

3. Finally the algorithm for domain decomposition was extended to solve fluid flow cases

using channel flow and lid driven cavity problems with speed up ranging from 1.74 to

2.91.

In conclusion, the algorithm of domain decomposition for parallelization was deemed to be

working for conduction and simple fluid flow problems using both spectral methods and FDM

for discretization.

5.1 Future Scope

The present work has the following potential future scope:

1. Heat and fluid flow problems can be handled in irregular domains using spectral

methods by incorporating appropriate grid transformation techniques.

2. Refining the domain decomposition codes for fluid flow problems to attain better

speed-up and to solve high Reynolds number situations.

3. Extending domain decomposition method to heat flow problems based on the foundations

of fluid flow algorithms.

4. Handling conduction problems in irregular geometries using the domain decomposition

algorithm developed for regular domains and a suitable transformation.
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