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Abstract: 

Depleting freshwater reserves are becoming a global concern and the thermal desalination of 

alternative water sources like seawater presents a possible solution. AI and machine learning can 

capture the complex physics involved in these systems and present an easy way for estimating 

their performance for informed decision making. We used simple regression tools and an advanced 

ANN model to analyse the performance of membrane distillation (MD) desalination systems from 

a comprehensively developed dataset. Neural networks are significantly accurate in predicting the 

overall performance of MD systems and can facilitate better decision making for adopting 

desalination technologies. 

Introduction:  

The lack of access to drinking water for billions of people across nations is increasingly 

becoming an issue of global importance [1]. The limited availability of freshwater sources and 

harvesting techniques has led to the development of effective desalination strategies for treating 

the abundant saline water from oceans [2-4]. In most water treatment methods, the salinity of the 

feed (saline water) rises as pure water is extracted from the solution and so desalination plants 

have to be efficient across a wide range of salinities (from seawater levels to saturation levels) [5-

7]. Filtration techniques and pressure based processes like reverse osmosis are often energy 

intensive when treating highly saline waters and can be rendered impractical. Thermal desalination 

systems have shown consistent performance with variations in feed salinity and large scale 

processes like multi-effect distillation (MED), thermal vapor compression (TVC) among many 

others can meet the increasing water demand [8]. 

Energy costs in thermal desalination systems often govern their feasibility and in some 

cases can be as high as about two-thirds of the total operating expense [9-11]. This presents a major 

limitation of using large scale thermal desalination plants in developing and under-developed 

nations which are usually the ones hardest hit in terms of pure water supply. Low temperature 

thermal desalination processes like membrane distillation (MD) can be used a cost effective 

method in these countries to achieve energy efficient desalination [12]. The performance of MD 

systems is governed by numerous parameters like the feed salinity, feed inlet temperature, system 

length scales and configurations to name a few [13-15]. Accurately predicting the performance of 

MD systems across these varied conditions presents a major challenge in their design and 

optimization. Over the years, numerous studies have examined the performance of MD resulting 
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in comprehensive datasets that can be fed into machine learning algorithms to facilitate a future 

pathway for the technology [16-18].  

The idea of using machine learning and artificial intelligence in desalination has gained 

momentum over the recent years with studies considering membrane fouling, flux production, 

energy efficiency and even parameter optimization [19]. Supervised ML regression tools and 

artificial neural networks (ANN) have been used to predict the productivity of solar stills [20,21]. 

Artificial intelligence has been used to understand the mass transfer in desalination membranes 

and to optimize the membrane parameters using methods like genetic algorithms (GA) and ANNs 

[22-24]. However, very few studies have been aimed at predicting the system scale performance 

of desalination systems in general. Tashvigh et al. [25] used a GA approach to determine the 

optimal system parameters for maximizing pure water flux instead of actually predicting the 

performance at various salinities and top temperature. Yang et al. [26] adopted ANNs to predict 

the performance of a VMD system with varying temperature, flow rate and module lengths but 

their experiments dealt with low salinity feeds which are seldom observed in practical scenarios. 

Furthermore, both of these studies used a relatively small experimental dataset (154 and 36 

respectively) to train and test their models which does not give an overall estimation of the diverse 

conditions. Thus, a comprehensive study on the performance prediction of MD systems using 

critical input parameters and extensive datasets is missing in the literature and efforts need to be 

directed towards producing well defined datasets and reliable predictive models.  

In the present study, we developed a multivariable regression model to predict the energy 

efficiency and flux production of air gap membrane distillation (AGMD) systems. In conjunction, 

exploratory analysis was done to formulate an ANN algorithm for accurate prediction of system 

performance based on the learning of a comprehensive dataset. The feed salinity, inlet temperature, 

flow rate and module length were chosen as the input parameters for the models and the output 

variables were the energy efficiency (GOR) and permeate flux (LMH). The dataset was developed 

from numerous runs of an in-house well validated numerical code investigating the heat transfer 

and thermodynamics of practical AGMD systems. This work marks the first comprehensive 

performance prediction and data analysis of MD with variations in feed inlet salinity. The 

groundwork laid for developing ANN algorithms can facilitate reliable predictions across varied 

operating conditions and as a consequence formulating a complete ANN method would be the next 

step.  

Dataset description: 

 Input parameters for the data set are chosen to be the feed inlet salinity which is a measure 

of salt concentration, feed inlet temperature which represents the temperature after the top heater, 

feed mass flow rate and module length which is the net channel length across the entire module 

array. The output parameters are energy efficiency, which in MD is described by gained output 

ratio (GOR) defined as heat of vaporization of permeate divided by the heat input required for the 

MD system. 

𝐺𝑂𝑅 =  
𝑚̇𝑝ℎ𝑓𝑔

𝑄̇ℎ
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𝑚̇𝑝 [kg/s] represents the permeate flux, ℎ𝑓𝑔 [kJ/kg] is the latent heat of vaporization and 𝑄̇ℎ [kW] 

is the thermal energy input required. The second output parameter is the permeate production 

measured in litres per meter square membrane area per hour (LMH).  

 The data set is developed from a well validated numerical code [27-29] capturing the heat, 

mass -transfer and thermodynamics of MD systems. The computational MD model was based on 

one-dimensional finite difference method, where properties varied along the length and were 

assumed to be constant along the width. Mass and energy conservation equations were solved for 

each discretized control volume (shown in Figure 1) using the built-in property evaluation 

functions of engineering equation solver (EES) [30]. Span-wise property variations were 

accounted for using thin temperature and concentration boundary layers. 

 

Figure 1: A computational element used for developing the numerical code capturing the heat 

transfer and thermodynamics of MD systems [29]. 

 

Methodology: 

 A comprehensive dataset is developed for training the polynomial regression and ANN 

models using an in-house code modelling MD systems. The range of input parameters is chosen 

as follows: Feed salinity is varied from 35 g/kg to 175 g/kg in 35 g/kg intervals, feed inlet 

temperature on the hot side is varied from 40oC to 80oC in intervals of 10oC, the feed flow rate is 

varied from 0.25 kg/s to 1 kg/s in intervals of 0.25 kg/s and finally the module length is varied 

from 0.5 m to 20 m using 20 equal partitions. In total, the dataset consists of nearly 2,000 data 

points which are then used for training and testing the learning models. 

 In the first phase of this study, polynomial multivariable regression is carried out to develop 

a simple model that can help in understanding the correlation between the input variables and the 

desired outputs of permeate flux and efficiency. The performance of the resulting regression model 
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is judged based on the R2 score obtained in predicting the test data points and the relative losses 

incurred in training and validation of the model. Eventually, a sensitivity analysis is carried out to 

determine the optimal learning rate for the regression algorithm by plotting the losses with a set of 

learning values. These performance metrics and parametric analysis build the foundation for 

developing an ANN model and tuning the associated hyper parameters for optimization.  

 An ANN based on feed forward neural network is formulated in the second phase using 

the comprehensive data points available for training. Model specific hyper parameters are 

initialized using the activation function ReLU, random allocation for weights and the number of 

hidden layers and neurons within each layer are optimized from an initial state of 1 and 16 

respectively. The SGD optimizer is used with a suitable learning rate and the loss function is set 

as mean squared error (common for regression problems) in the algorithm. Mini-batch size for 

data analysis and the number of epochs are initialized using appropriate values with the early 

stopping method being used for regularization to avoid overfitting (reducing the number of hyper 

parameters). The resulting model is trained on the dataset and the results are compared to those 

from the polynomial regression model. Finally, hyper parameter optimization is carried out to 

determine the optimal values of learning rate, number of hidden layers, batch size and the type of 

activation function that leads to better predictions. These optimal values complete the ANN model 

and results from the regression model and ANN algorithm are compared and validated for unseen 

operating conditions generated using the thermodynamic MD code.  

 

Results and Discussions: 

1. Losses and R2 value for multivariable regression 

Multivariable regression was carried out using the developed data set and a second order 

polynomial was fitted for energy efficiency and flux estimation of MD systems. The model 

accurately captures the variation of efficiency (R2 score > 0.95) with the input parameters and 

does a decent job of predicting the permeate production. In conjunction, the training and validation 

losses are very small for both estimations of efficiency and flux as seen in Table 1. 

Table 1: Performance metrics for the multivariable regression model predicting the performance 

of MD systems 

Parameter R2 score Training Loss Validation Loss 

Energy Efficiency  0.9566 0.0002764 0.001007 

Flux 0.8046 0.0003301 0.000917 

 

2. Artificial neural networks for predicting energy efficiency and flux  

An ANN model was developed to accurately predict the performance of MD for unseen conditions 

with respect to the model. The model specifications are detailed as follows: the number of hidden 

layers are set as 5, number of hidden neurons are 64, the activation function for hidden and output 

layers is ReLU with random weight initialization. The SGD optimizer is used with mean squared 
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loss function, batch size of 4 and 30 epochs. The resulting ANN model exhibits an accuracy of 

0.94207 and the losses in training and testing are plotted with the number of epochs as shown in 

Figure 2 and 3.   

 Hyper-parameter optimization was carried out using the grid search method to determine 

the optimal activation function and SGD batch size for the ANN model. The best function was 

found to be ReLU among other tanh, sigmoid and Leaky ReLU options and the optimal value for 

batch size was found to be 4. Thereafter a manual search was carried out to determine the optimal 

number of hidden layers and the learning rate for the neural network as shown in Figure 4 and 5. 

 

Figure 2: Training and testing losses with number of epochs for the ANN model with the 

specifications mentioned in this section. 

 

Figure 3: Training and testing accuracy with number of epochs for the ANN model with the above 

outlined specifications. 
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Figure 4: Training and testing losses, accuracy with number of epoch for varying number of 

hidden layers (3,5 and 7 hidden layers are considered here). The performance for all the three 

cases are similar with 5 hidden layers showing slightly better results.  
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Figure 5: Training and testing losses, accuracy with number of epoch for varying learning rates. 

The performance at larger learning rates (1, 0.1 and 0.01) is poor with high losses and low 

accuracies. The learning rate of 0.001 is found to give the most acceptable results with low losses 

and higher accuracies. 

 

3. Performance of the models on novel input conditions 

The optimized ANN model and multivariable regression model were used to predict the energy 

efficiency and permeate production of MD systems under novel conditions shown in Table 2 (not 

included in the data set used). The results from these models were compared to the numerical 

algorithm output and they were found to be closely correlated as shown in Table 3. We observe, 

that the multivariable regression model does a great job in predicting the energy efficiency for the 
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test cases but is significantly off in predicting the permeate production. This was expected since 

the R2 value was lower when fitting the flux values from the data set and a closer look reveals an 

exponential relation between flux and the input parameters. The ANN model is consistent in 

predicting both the energy efficiency and flux of MD as seen in Table 3, but in some cases is a bit 

off compared to the regression model. This can be rectified by including more data points in the 

data set so that the model can learn effectively. Accurate prediction of flux values shows the 

benefits of using an ANN model which can capture the complex relations between permeate flux 

and the input parameters.    

Table 2: Test case conditions for the ANN and multivariable regression models  

Index Salinity  

[g/kg] 

Feed Inlet 

Salinity 

[oC] 

Feed Mass Flow 

Rate  

[kg/s] 

Module Length 

[m] 

1 90 55 0.8 6 

2 115 75 0.6 2 

3 40 65 0.55 5.5 

4 65 70 0.7 8.5 

5 145 58 0.9 12 

 

 Table 3: Comparison of MD performance for the above mentioned test cases with numerical 

solutions, ANN and regression model solutions. The index represents the respective test cases with 

conditions outlined in Table 2. 

Index Computational Results ANN Results Regression Results 

Efficiency 

[GOR] 

Flux 

[litres/m2hr] 

Efficiency 

[GOR] 

Flux 

[litres/m2hr] 

Efficiency 

[GOR] 

Flux 

[litres/m2hr] 

1 2.533 1.146 3.320 1.017 2.640 1.430 

2 1.774 4.005 1.434 5.078 1.948 4.309 

3 4.193 1.405 3.854 1.809 4.850 2.016 

4 5.103 1.308 5.276 1.197 5.374 1.635 

5 3.540 0.679 3.889 0.495 3.747 0.333 

 

Conclusions:  

Artificial intelligence and machine learning can be used to accurately capture the heat transfer and 

thermodynamics of MD desalination systems. Simplistic tools like multivariable regression can be 

adopted to accurately predict the energy efficiency of MD (R2 score of 0.96) but they suffer from 

inaccuracies in estimating the permeate production (R2 score of 0.80). A complete performance 

description can be obtained by training artificial neural networks (Accuracy of 0.94) on 

comprehensive datasets so as to capture the involved relationship between performance metrics 

and input parameters. This work shows that AI tools can be used for accurately predicting the 

performance of desalination systems and can help decision making in under-developed and 

developing countries.  
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